
1

2

Elaboration of cover images by Dr Valentina Cairo, UNICAL - Italy

3

 To my sons Gaia and Flavio

 which their love highlight

 my life.

4

TASS SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF

ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED,

TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NON INFRINGEMENT.

5

TASS

Trigger and Acquisition System Simulator
The bridge in HEP software simulation

The bridge in HEP software simulation

6

7

CONTENTS

1. Overview of vers. 4.5 .. 9

2. Introduction to TASS .. 11

TASS in stand-alone.. 13

TASS in connection to real DAQ computer .. 14

3. Installing TASS ... 17
TassProject.zip ..17
TassDeviceEditor.zip..18
TassModuleSource.zip...18
TassEccSource.zip ..18
TassSample.zip ..19
TassRemoteDaq.zip ...19
TassManual.zip..19

TASS in a click .. 19

Update and feedback ... 20

4. Working with TASS ... 21

TASS menu bar ... 21

How TASS works .. 26

Control Room Layout ... 27

Using Nim, Camac and Vme modules .. 30

Cabling .. 32
Make connections (Ctrl+M) ..33
Delete connections (Ctrl+D)..34
Show connections (Ctrl+V) ...34
Hide connections (Ctrl+H)...34
Ecl flat cable connection ..35
Connection Info (Ctrl+I) ..36

Break Point .. 37
BrkP - break and pause ..37
BrkW – break and write to file ...38
BrkI – break and send interrupt to Daq program ..38

Cursor and plug summary .. 39

5. Remote Tcp/Ip communication .. 40

Overview of networking ... 40

6. Remote Daq ... 41

RemoteDaq Programming Model ... 44

RemoteDaq class for communication protocol .. 46

Example for Visual Basic RemoteDaq. .. 50
The RemoteDaq_TestAdc ..50

8

Full simulation of Extreme Energy Events Detector and Daq .. 56

7. External Signal Data File .. 71

The external signal data file format .. 72
How to assign an external input signal file to input plug ..74
How to assign an external output signal file to output plug ..76
Example program using external file data signal ..77

8. External Tcp/Ip signal data .. 78

The external Tcp/Ip signal data format ... 79
How to assign an external Tcp/Ip input signal to input plug ...80

Handshake protocol for Tcp/Ip input signal ... 82
How to assign an external Tcp/Ip output signal to output plug ..85

Example programs for external Tcp/Ip data signal ... 88

9. Remote Hardware Monitor .. 91

Tcp/Ip hardware monitor example ... Errore. Il segnalibro non è definito.

9

1. Overview of vers. 4.5

TASS - Trigger and Acquisition System Simulator - is a program devoted to experimental

physicists developing their trigger systems and to the students learning the fundamental aspects of

this job.

In the present version 4.5 several new features have been implemented in TASS program.

The most important new feature is the capability for users to develop themselves the simulation

their own modules writing code in fast and easy way. For this goal TASS gives support by :

 A library of ECC (Electronic Component Control) like connectors, switches, knobs etc. This
enables the user to build up the module panels in standard and fast way.

 A Device Editor allows to write most of code (~70%) in automatic way : it scans the module
panel to check which ECC are present then writes directly the corresponding code routines.

Only the specific behaviour of modules is responsibility of the user.

 Using the ECC library and the Device Editor the user can build himself any modules and

link it to TASS program in easy and quick way (the Microsoft Visual Basic 6 package must

be installed on the computer).

 The input pulses can now be produced either by the wave generator or coming from an
external input file. Connection with GEANT output becomes possible.

 Input pulses can be collected via network line (Tcp/Ip) sent from the real Daq computer.
This enables TASS to be used as monitor to check the hardware failure of real system.

 Break points can now be set either on input or output plug.

 Improved supports for Camac and Vme calls.

 The HBook library has been expanded with new features.

 Ecl plugs strip connectable by 3M like flat cable in fast and easy way.

 Complete rebuild of “Control room layout manager” representing the counting room.

In the downloaded package, you will find some examples showing the main features of the

program and the way to build and run your own trigger system using the available modules.

For any questions, suggestions and/or bugs report please send mail to

tass@top1.it

We hope to build up an internet discussion group where people can exchange experience and

suggestions and where to make available to the physicist community the homemade developed

modules and ECC, widening their number and type.

mailto:tass@top1.it

10

Why TASS is written in Visual Basic 6 ?

Before starting to develop TASS core (end of the last century) I studied all the computer

languages on the market in that time because I was well aware of the difficulties and

dimensions of this job, for now TASS is about 1 million of programming lines. Of course, in

the future, the implementation of new modules appearing on the market will increase that size.

 In any case, especially from a graphical point of view, no competing language could do better

than Visual Basic.

On the other hand, contrary to what many programmers think, Visual Basic 6 is a powerful and

complete object oriented language (OOL) and, moreover, its grammar is clear, well structured

and easy to use. No weird characters like (; { } [] etc.) typical of Java and C++, often hard to

find on the keyboard, are used.

Its IDE, I think, is in absolute the best among all those on the market.

Yes, actually, Visual Basic has two problems:

 its name brings to mind the Basic toy of the first microprocessor systems like Spectrum ZX
or similar. Obviously Visual Basic 6 is of a completely different power and consistency!

 Its cost, really high (about $600) considering the period in which it was placed on the

market. Today the .NET version is free.

Colleagues and friends have often criticized the choice of Visual Basic and Windows, pointing

out that in the field of elementary particle physics the standards currently in use are Java/C++

and Linux.

But it must be considered that TASS is a self-consistent program and the interaction with the

outside world (Daq) is done through the exchange of ASCII strings over the Tcp/Ip protocol,

which makes TASS itself and the Daq completely independent from each other.

In short, it is a situation equivalent to a web browser and internet pages... the two worlds are

linked together through the HTML language.

On the other hand, all the sample programs in this manual can be edit by any word processor

making their translation, in any computer languages, fast and simple.

 In the present version of TASS program we show very few example of trigger system with

their controlling Daq program written in other language than Visual Basic 6 and their skeleton

is just in rough and simplest form. We aspect help from users.

Therefore....

 ...Enjoy using TASS

11

2. Introduction to TASS

The modern experiments in elementary particle and nuclear physics demand increasingly

sophisticated trigger systems. Since the early years ’30 (Rossi’s coincidence) the trigger philosophy

has been applied to extract from the background the interesting events. The trigger systems have

become more and more complex, operating at higher and higher speed and their development

committed to a team of expert people. So far, the design and construction of a trigger system has

been based on the experience of its designers and the simulations always based on software

programs.

On the other hand, the transfer of know how among the members responsible for trigger

systems can become very difficult if based on pencil and paper and thousands of lines of program

code. Therefore an interactive graphical tool becomes an essential part of the trigger design process.

Fig. 1 shows the main stream of an experiment. The upper part represents the hardware

components, the corresponding software tools are drawn below. TASS aims to be the “bridge “

joining the existing packages for physics simulation (i.e. Geant) and the analysis program (i.e.

Root).

TASS is a simulation program with graphical and interactive interface, it reproduces in a

realistic way the commercial Nim, Camac and Vme modules: both the front panel picture and the

electrical and logical behaviours are simulated, see Fig. 2.

The simulation of a trigger system does not require to the user to write any lines of code,

(see also "How TASS works" section) in fact:

- The user, to build up his simulated trigger set up, chooses from libraries the modules he

needs, puts them in the crates, does the cable connections and run the system in simulated way.

- The user has access to any hardware and software characteristics as with real modules: he can

move switches, push buttons, set Camac or Vme functions and so on.

- For each cable connection TASS computes the real length (translate to the real world) of the

cable and takes into account its delay.

- TASS provides also many tools usually found in a counting room: digital scope, wave

generator, voltmeter, Camac manual crate controller, screwdriver ...

TASS provides the capability to set hardware break points, that is, the user can pause the

simulation if determined events occur. This is a powerful tool to trace the flow of signals and to

evaluate the hardware dead times of system.

The capability to accept/send external signal data via Tcp/Ip network connection enables TASS

to perform monitor control of a real hardware trigger set up. Indeed, by doing a cross check

between the data acquired by the real trigger system and the data produced by TASS any hardware

fault can be discovered in fast and easy way (see "Remote Hardware Monitor" section).

The program has been developed having in mind what the user does in the real world,

e.g. it provides a sketch of control room layout where the user can place the racks and crates for all

the electronics of experiment and also, for instance, the standard tools as scope, waveform

generator, voltmeter and so on.

12

 Moreover, if the user wishes to dismount a module from a crate, the program checks if any

cable is still connected to it and a warning message notifies if this is not the case, and so on (see

also "How TASS works" section).

Note:

TASS was written in Microsoft Visual Basic 6 (VB6) and therefore most of the examples shown in

this manual are also written in VB6. Some examples are also presented in Java language (refer to

the corresponding package in the TassSample.zip and TassRemoteDaq.zip packages).

Help from users to develop examples written in different languages will be greatly

appreciated (contact tass@top1.it).

Detector Daq +

Trigger

 Anaysis

Geant Root TASS

 Real World

Virtual World

Fig. 1

13

TASS has been designed to be used in different environments:

TASS in stand-alone mode (no Daq)

In this way TASS is extremely useful

- to design and to document the trigger system in physics experiments

This is the main TASS goal. The trigger designer can gain a lot of help building his

system in virtual environment. He can choose from the library the modules he needs, put

them in the crates, do the connections and run the system in simulated way.

The designer can set and tune in an interactive way any parameter of each module. For

example, he can stimulate the system sending signals by a waveform generator then he

can see, in real time, the result of any change using the digital scope and measure the

output voltage by a voltmeter.

- to debug real trigger systems

TASS is extremely useful to identify a bad working module in an already running trigger

system doing the cross check between the real set up and the simulated one.

- to evaluate the features of new home-made modules

The design of a new home-made module can be simpler if the environment where it will

be inserted has been simulated in advance. Good indications can arise and a better design

can be done, avoiding bad surprises at installation time.

- to evaluate the dead time and the efficiencies

TASS has trace of delay and duration time of signals of any module, cables connection

and so on. Stimulating the input with different patterns can be easily performed an

evaluation of efficiency and hardware dead time.

- to save beam time for trigger set up and tuning

Most of beam time spent to tune the real system can be saved if any critical part has been

simulated in advance. This can be extremely important in case of short beam allocation

period.

- to test the Data acquisition program

TASS provides a full set of Esone and Vme routines. The writing and debugging of Daq

program can be simulated and tested gaining in efficiency and time.

- to teach the fundaments of trigger systems

TASS offers to students and instructors the ability to quickly design and test a general

purpose systems without any real available modules saving, therefore, a lot of time and

money.

- to understand how the modules work

Using mouse and keyboard the user can investigate the features of the modules without

the request of expensive laboratory’s tools.

14

- TASS output

 TASS supplies automatically:

 -The picture of whole layout of the trigger system (counting room)
-The picture of any crate

-List of used crates

-List of used modules

-List of used cables

-List of connections

TASS in connection to real DAQ computer

All the cases listed above concern pure software simulations; TASS allows overcoming this

limitation, in fact:

 The full integration with the real Daq program can be easily achieved by the exchange of
Camac and/or Vme command via Tcp/Ip communication, that is, let TASS simulate the

trigger hardware while the DAQ program runs in real world using the final computer and the

preferred operating system, see “Remote Daq” section.

 TASS can accept external input signal data and send output data via a Tcp/Ip network
connection. This new feature promotes TASS to become not only a simulator but also a very

powerful monitor of hardware trigger system (see “Remote Hardware Monitor” section).

15

Fig. 2 partial view of small set up

16

17

3. Installing TASS

 The full TASS package is free available on web sites:

http://www.top1.it/tass

TASS has been designed to run under Windows (all 32/64 bit version). Due to its

characteristics, it demands a lot of computer resources, it is therefore advisable to use a suitable

computer configuration.

 The minimal suggested configuration is:

CPU 1 GHz or higher

Memory 8 GBytes or more

High resolution screen 1152 * 864 pixels , 17 inch (more

than 24 inch preferred)

(1600*1200 pixels preferred)

Hard disk 20 Gbytes free on disk

Fast network connection

For comfortable download the TASS package has been divided into seven zipped files:

- TassProject.zip

- TassDeviceEditor.zip

- TassModuleSource.zip

- TassEccSource.zip

- TassSample.zip

- TassRemoteDaq.zip

- TassManual.zip

Before to download the zipped files we strongly suggest to prepare a folder called

“TassUnzip” where to unzip any files concerning the Tass package.

A short description about the zipped files follows.

TassProject.zip

This is the main file containing all the program and support tools to build and run simulation

trigger set up. After download, unzip the file in TassUnzip folder, then double click on Setup.exe to

start the installation procedure. The following packages will be installed:

- TassProject system

- TassComponentsVers31

- HbookLib

- All the Nim, Camac and Wme modules developed so far (see the list below)

http://www.top1.it/tass

18

- The Tass manual

- A set of sample set up trigger systems used in this manual

TassDeviceEditor.zip
 This is the file containing the program and support tools to build your own module’s

simulation program. You need to download and install this package only if you plan to develop

code for new or not available modules (the Microsoft Visual Basic 6 package MUST be installed on

the computer).

After download, unzip the file in “TassUnzip\TassDeviceEditor” folder then double click on

Setup.exe to start the installation procedure. During installation process you could get some

messages warning you about files already installed, answer “Yes” to any questions. This avoids to

overwrite files installed by previous TassProject installation.

After installation is completed, check in the folder …\VB98\Template\Projects if the file

“Tass Device Editor Wizard.vbz” is present, if not, make there a copy from ”Program Files\Tass”

folder.

If you develop any new modules and you plan to make them available to the physicist

community please send e-mail to tass@top1.it for the publication on this site.

TassModuleSource.zip
This is the file containing the source program code of the Nim, Camac and Vme modules

developed so far, see appendix B for a list of available modules.

You need to download this package only if you plan to develop code or you like understand

how the TASS simulation of modules works.

After download, unzip the package in the folder “Program Files\Tass\ TassModuleSource”.

In this case you don’t have to install anything, indeed the package is a collection of the source code

that you can use as example and guide if you plan to develop new module.

If you develop any new modules and you plan to make them available to the physicist

community please send e-mail to tass@top1.it for the publication on this site.

TassEccSource.zip
This is the file containing the source program code of the electronic components developed

so far and used by TassProject and TassDeviceEditor packages.

You need to download this package only if you plan to develop code for new or not

available ECC (Electronics Components Control).

After download, unzip the package in the folder “Program Files\Tass\TassEccSource”. In

this case you don’t have to install anything, indeed the package is a collection of the source code

that you can use as example and guide if you plan to develop new components.

If you develop any new ECC and you plan to make them available to the physicist

community please send e-mail to tass@top1.it for the publication on this site.

mailto:top1@top1.it
mailto:top1@top1.it
mailto:top1@top1.it

19

TassSample.zip
This is the file containing the source program of small trigger set up, most of them will be

already saved at TassProject installation time.

After download, unzip the package in the folder “Program Files\Tass”. In this case you don’t

have to install anything, indeed the package is a collection of the Tass projects that you can use as

an example and guide to build up your project.

If you intend to make any code available to the physicist community, please send e-mail to

tass@top1.itfor the publication on this site.

TassRemoteDaq.zip
This is the file contain examples of class program for the C++, Java, LabView and Visual

Basic languages. User can modify or use as starting point for Remote Daq class interface (see

“Remote Tcp/Ip Comunication” section in the TassManual).

TassManual.zip
This is the file containing the Tass manual. The manual is already installed at TassProject

installation time. This package allows you to have the Tass manual without the need to install the

TassProject itself.

TASS in a click

 Just after the installation you can have the first look of TASS program and you can exploit

its features going in the following steps:

 Start TASS, in the main window select File/Open menu, then navigate on the system and
select the Sample\TcpIp_Protocol\RemoteDaq_Adc\RemoteDaq_Adc_Lam folder.

 Double click on RemoteDaq_TestAdc_Lam.trg file. The trigger set up, as fully explained

in “Example for Visual Basic RemoteDaq” section in this TassManual, will be loaded.

 Press Run/Cont button then move the switch on the “Wave Generator” module on “Run”
position. The simulation starts and on Scope you can see the pulse, simulating

photomultiplier signal, appears.

 Go back in the Windows Explorer and, in the folder C:\Program Files(x86)\Tass\
Sample\TcpIp_Protocol\RemoteDaq_Adc\RemoteDaq_Adc_Lam,

double click on the Daq program RemoteDaq_TestAdc_Lam.exe. The small window

"Remote Daq Test ADC" appears, into text insert field write “LocalHost” and press Ok

button. The Daq program starts to collect data from the trigger simulation set up.

 Play with knobs, switch, buttons and watch the result of any changes on the scope and on

the Daq window.

Take in consideration that in this sample you have two crates (NIM and CAMAC). You can

select them by Crate menu on the main TASS windows

20

Update and feedback

 The update of TASS program will be posted on the web site www.top1.it/tass. These will

include the new future version of TASS itself and the new modules and Electronic Components

Control and any other sample set up.

 It is strongly recommended that the user signs the application form (see Help menu) in order

to receive all the update.

If you have question, comments, suggestions or you want to share your developed modules

or your tips and tricks with physicist community please send mail to tass@top1.it.

http://www.top1.it/tass
mailto:tass@top1.it

21

4. Working with TASS

TASS is a self-consistent program, that is, it runs without any other program’s support. The

program has been developed having in mind what the user does in the real world. The main idea is

based on built-in ‘‘library of modules’’, where each module reproduces in a realistic way the panel

picture and the electrical and logical behaviour of the real one. A sophisticated GUI allows the user

to push buttons, turn knobs, make cable connections, set Camac/Vme function and so on.

The user builds his virtual trigger/Daq system choosing from a library the modules wish he

needs, places them into crates, makes the suitable cable connections and runs the simulation. Any

parameter/component can be set/changed interactively. Input signals, provided by virtual waveform

generators or external data files, can be used to stimulate the system and the resulting outputs can be

shown on a virtual digital scope.

To achieve the above features TASS interacts with user via the following menus (refer to the

corresponding sub-sections for more information).

TASS menu bar

File Menu

New (Ctrl+N)
Open a new “Untitled” TASS project and display the Layout form (see “Control Room

Layout” section).

 Open (Ctrl+O)
Open an existing file containing a TASS project and its Daq program file, if any.

 Save (Ctrl+S)
Save the current TASS project on disk replacing the existing file, if any, with the same

name. If the project name is “Untitled” the Save command has the same effect of

Save as …

 Save as …
Save the current TASS Project on disk asking the name of the file. An extension “.trg”

will be automatically added. The project’s window will take the new name.

22

 Printer set up
 Show the printer set up window.

Print (Ctrl+P)
Print the content of the front window on the default device defined by Windows OS.

 Exit (Ctrl+E)
Leaves TASS and return to Windows OS. If changes had been made in the current

project, TASS asks if you want save it .

Run Control Menu

Run Daq Program (F8)

Run the Daq Program.

Suitable for projects using programmable modules (Camac, Vme) in conjunction with

their Daq programs.

Run/Cont (F5)
Runs the current Project or continue if paused.

No Daq program will be taken in account. Suitable for project using non programmable

modules (NIM).

Single Step (F6)
Advances the current run by a single event (see the “How TASS works” section)

Pause (F7)
Pause the project if it is running

Reset Run
Reset the slot pointer at first event position (see the “How TASS works” section).

All used modules will be reset at idle state but no change on setting of any components

will be done. The run will be paused.

Crate Menu

23

 Show Control Room
Displays a virtual picture of racks in the counting room (see “Control Room Layout “

section).

 Crate (updated by installed crates)
Displays number and name of used crates. Selecting a crate in the list, it will be

displayed on the main TASS window.

Nim Module menu

This Menu is enabled only if TASS shows in the main window a NIM crate.

Selecting this command the user can get one of the NIM modules shown in the menu list and

can put it in the crate shown in the main window. Refer to “Using Nim, Camac and Vme

modules” section for deeper discussion.

Camac Module menu
This Menu is enabled only if TASS shows in the main window a Camac crate.

Selecting this command the user can get one of the Camac modules shown in the menu list and

can put it in the crate shown in the main window. Refer to “Using Nim, Camac and Vme

modules” section for deeper discussion.

Vme Module Menu

This Menu is enabled only if TASS shows in the main window a Vme crate.

Selecting this command the user can get one of the Vme modules shown in the menu list and

can put it in the crate shown in the main window. Refer to “Using Nim, Camac and Vme

modules” section for deeper discussion.

List Vme address space

lists on logger window the address space reserved by the modules installed on the

current Vme crate

Cabling Menu
The items in this menu allows to make, delete, show and hide the cabling connections in the

Project (see the “Cabling “ section for more details)

External Signal

 Set Break Point (Ctrl+B), Remove Break Point, Remove All Break Point

24

Set or remove the break points.

TASS provides the capability to set hardware break points, that is, when a wished event

occurs on a specific plug the program pause the execution. See “Break Point “ section

for more details.

To set (remove) a break point select Set Break Point (Remove Break Point) and

Click on the plug where you want set (remove) the break.

Connect to input file , Remove from input file, Remove all from input file
 Set or remove signal issued by input file (.sif) connected to an input plug

 Connect to output file, Remove from output file, Remove all from output file
 Set or remove signal delivered to output file (.sof) connected to an output plug

 Show message on Daq socket
 Shows the messages exchanged via the TCP/IP Daq socket

Tools Menu

Digital Scope
General purpose digital scope (see the “Module description” section)

Wave Generator
General purpose wave and function generator (see the “Module description” section)

Show Meter
Toggle command showing the voltage from any module output plug.

Click the command then points out and hold down left mouse button on the output plug,

a small light blue tip appears on the menu bar showing the measured voltage.

The same command is used to show any other variables (width, threshold etc.) see

“General Consideration “ in the “Module description” section. In conjunction with the

Ctrl button this avoids changing the value of the parameters associated with the knobs

or screw (turn not allowed).

Refresh crate (Ctrl+R)
 Force the redrawing of presente crate

Options …
Open the general options dialog window

UserList Menu

25

 Show Logger, Clear Logger
 Show or clear the "TASS Logger" window

Crate List, Module List, Cable List, Signal Connections List
Show on immediate “TASS Logger” window the corresponding list

List all
Show on immediate “TASS Logger” all previous items list.

The "TASS Logger" content can be either saved on file(the .log extension will be add

automatically) or printed on printer.

 Help

About TASS …
Open About TASS window where you can find the Server Local Ip number, very

useful for Remote Daq connection (see Remote Daq section).

 TASS and Device Editor Manual
 Here you find this manual and the Device Editor Manual on line version

 Donate
 Here you find an exhortation to help the TASS developer team with a small gift.

You can imagine that the development and maintenance of TASS involves a work of thousands

of hour per year. We are constantly involved in the development and coding of new modules

entering in the market.

Your little financial support allows us to work harder and with more time to devote to TASS.

Moreover remember that, on request, it is also possible to develop TASS simulation for

your own homemade modules, contact us at tass@top1.it

26

 How TASS works

TASS performs a discrete simulation of the signals in a logic circuit, the program doesn’t

attempt to analyse the internal circuit of the modules but simply takes in account their transfer

functions. For each module, the program assumes the mean values of parameters (gain, delay, width

etc.) as reported in data sheets of the constructors. The delay of cables are taken in account, too.

Nevertheless, no raising and falling time are taken into account for digital signals.

The analogue signals are treated in a discrete approximation, meaning that signals level and

time change only in step, rather than continuously (typically the sampling rate is 2ns/step).

The simulation is “event driven”, an event being a change in the amplitude level of a signal.

Beyond the standard mouse and keyboard events, TASS defines the special event "Pulse" usually

associate to the Nim and Ecl signal plugs.

Each time an Pulse event occurs, the program computes the transfer function of all modules

whose inputs are affected by that event and reflects the changes on their outputs. No computation is

performed when no event occurs, so delay/width of devices setting or clock values do not affect the

simulation speed. Of course all the events are handled by TASS and are completely hidden to the

user.

Time values are internally stored in 64 bit using Currency format: the values can range from

0 to 922.337.203.685.477,5807 ns allowing a total simulation time more than ten days with

resolution better than picoseconds !

TASS can run trigger simulation either without any external Daq program (e.g. if only non

programmable modules are involved) or with a companion external Daq program that can be

resident on the same computer or operate via network connection.

In both cases, the Single Step option is provided, that is, the program analyses a single event

then the execution pauses
(*)

.

Using Camac and/or Vme programmable modules the user has to provide an suitable external

program to:

 initialize any modules

 read and/or write internal register

 check the availability of data

 write on disk files any results

Usually all these tasks are handled by, so called, external Data Acquisition (Daq) program.

TASS provides the Esone library routines to handle the Camac and Vme functions and many

other software tools to enable the user to write and to link a Daq program in fast and easy way.

Usually the way in which the Daq program interacts with TASS simulator is via the Tcp/Ip

internet connection, that is, the user can use his/her standard real Daq developed in the proper

language and operating system, only the calls to handle the Camac and Vme functions have to be

replaced with the procedure issued in the Tass package (see Remote Daq section).

(*)

May happen, pushing the RunControl/SingleStep (F6) menu, apparently nothing changes but if you watch on the

Simulation Time label on the task bar in the bottom part of main Tass window, you will found the simulation time

increasing.

27

Control Room Layout

When user starts to design a new project simulating a trigger system, first of all, he has to

inform TASS about the physical disposition of the real trigger set up. For this purpose TASS

provides a virtual layout of the counting room.

User must choose a racks/crates configuration as much as possible similar to the real set up

because the relative position of the racks/crates will be scaled to real world and used to compute the

real length of cable connections and their delay.

To build up a new project select in TASS main window the File/New menu, the “Control room

layout manager” window appears. There, select Project/New Project menu and choose the suitable

racks configuration, TASS allocates the racks in a predefined position. Any time the user can add

more racks by Racks/Add menu. To remove a rack select Racks/Delete menu then click on the

rack you want remove, only empty racks (see later) can be removed
(*)

.

The location of each rack can be rearranged dragging it to the whished position, see fig.3. An

automatic realignment can be done by the Rack/Align Racks menu.

In order to arrange the rack configuration as much as possible similar to the real set up the

relative position of any rack (in cm), respect to the "Start of floor baseline", is shown in top.

If more room to allocate the racks is needed, you can resize the “Control room layout manager”

window dragging its right edge.

Fig.3

(*)

 For now, only racks with consecutive numbers are allowed

28

When racks are in the right place, you can fill them with the crates. You choose from Crate

menu the Nim, Camac, Vme6U crates you want install. Drag and drop the selected crate everywhere

inside the rack, a small picture, representing the chosen crate, will be allocated perfectly aligned

inside the rack. You can move the crate along the vertical direction either by dragging it or by right

click inside the crate itself and then Move Up/Move Down in the popup menu, (fig. 4).

Pay attention, the crates can be allocate only at predefined positions corresponding to

the screw holes in the real racks, this feature preserve you to choose a not realistic

configuration.

To remove an installed crate use either Crates/Remove menu and then left click on the crate

you want remove or the corresponding item on the popup menu (fig. 4).

Fig. 4

 User can install the fan units and patch panels, too. Select them from Special and

Special/Patch Panel menu respectively and refer to the above description concerning the crates for

corresponding features.

29

 To display the main characteristics of each installed crate select Crates/Show Crate

Properties, the following window is displayed (see Fig. 5). In the field Name the user can insert

any name to identify the crate, that name will appear in the Crate menu of main TASS window.

Note : the numeric digit appearing on field Name is not editable and is under TASS control.

 The X Position represents the distance respect to the left edge of floor baseline in the

"Control Room Layout Manager" (Fig. 4) and the Y Position represent the height respect to the top

of parent rack.

 Installation of Camac crate include automatically the installation of its crate controller in

station 24-25 (the standard "TypeA" used). The Branch and Crate number must be set (Fig. 5) and

their combination must be unique in whole the system, in case of address conflict a warning

message is issued.

 Installation of Vme6U crate include automatically the installation of its crate controller in

station 1 (the standard "CAEN_V1718LC" used).

Fig. 5

When any suitable crates are installed, click on the Done button of Fig. 4, Tass will go back

to the main windows showing the first crate. In the main window, user can navigate over the whole

set of installed crates selecting the Crate menu.

30

Using Nim, Camac and Vme modules

The registered modules are collected in three different menus depending on their type

(NimModule, CamacModule, Vme6UModule)
(*)

. Only the menu corresponding to the crate

currently shown on the main window is enabled, this feature prevents the possibility to install a

module in an inappropriate crate.

At start time, TASS fills each menu reading the module list from TASS.ini file located in the

{WinSysPath}/TASS
(**)

 folder, this file can be edited by any text editor. The Tass.ini file will be

update when you install new module code or when you develop your own module by the Tass

Device Editor package.

To use a module in a simulation the user selects it from its menu, the cursor changes to four-

arrows shape, then click anywhere in the wished station inside the crate, TASS takes cure to

allocate it correctly aligned. TASS also checks if there is enough room in the corresponding crate to

allocate the module and, if not the case, gives a warning message.

The last selected module is directly available holding down the Cntr key, this feature allows a

fast filling in case you need several equal modules installed in the same crate.

To remove an installed module click on the screw (on the extractor handler in Vme module) in

below part of panel. Only modules without any cable connection can be removed.

CAMAC vs Vme standard (see also RemoteDaq Programming Model section)

CAMAC (Computer Automated Measurement and Control)

is a standardization system for control electronics and data acquisition. It was developed in the

1970s as a common platform for building electronic equipment for scientific research, particularly

in particle physics.

Although CAMAC is currently a disused system and by now no manufacturer would have an

interest in placing new modules for this standard on the market, however it should be kept in mind

that in many laboratories around the world modules of this system are still in use, and this is reasons

TASS supports such a standard.

A CAMAC system consists of a controller (usually a computer) that controls and

communicates with the CAMAC modules all housed in a container called "Crate". CAMAC uses a

parallel bus for communication between modules and offers a number of mechanical and electrical

standards for interface modules.

In the CAMAC system, the internal registers of the modules are addressed using a hierarchical

system of addresses and sub-addresses. Each module is installed in a specific slot of the crate and

can have one or more sub-addresses, which represent the different registers or channels within the

module itself. To address an internal register of a CAMAC module, it is therefore necessary to

specify the crate number (C), the module slot number (N), the sub-addresses (A) of the desired.

(*)

 The old Vme9U standard is no anymore supported
(**)

 The {WinSysPath} is the path of the operating system folder, usually is the “C:\Windows\SysWOW64\” folder

31

register and the function (F) that you want to operate. The entire command is known by the

acronym CNAF

In the 1970s, the ESONE Commission (European Standards on Nuclear Electronics) issued the

EUR4100 and EUR4600 specifications relating to the CAMAC system
(*)

Vme (Versa Module Eurocard)

In the Vme system, the internal registers of the modules are addressed using a system based on

the base address (unique for each module) and the offset which specifies the register within the

module itself. Each Vme register therefore has an address formed by (base + offset) which uniquely

identifies it within the Vme system. In this way, the Vme system allows you to flexibly access the

internal registers of the modules.

In TASS, for Vme multicrates systems, all the addressing space is unique, that is, no overlap of

base addresses for all modules is allowed. List of base addresses of all installed modules can be

obtained by VmeModule6U/List Vme address space menu.

To set or modify the Vme base address register see below section.

General considerations

Running TASS, the user has to take in account some general considerations:

- Usually the modules have internal components (jumper, trimmer and so on) to set or select

different behaviour and/or to set/modify the register address of Vme modules. To access to

internal components double click on the name of module in the top edge, a lateral panel will

open showing the internal part (see below). A Close button provides to close the lateral

panel. The back panel components are accessed in the same way.

- Due to digital behaviour of the scope, after any change on the project set up, the user has to

wait at least one full trigger cycle to have the updated display. The label named “ trg’d ” on

menu bar of scope is highlighted when trigger starts and hide when display is updated.

- The scope and the Cable Info window stay always “on top” (that is, they cover any other

behind pictures). If they loose this property, click the corresponding button on the menu bar.

- TASS never shows the cables connecting the scope’s plugs. That cables are always 8 ns long.

Use the Cable Info tool, instead of (see next section).

- The flashing light (led or lamp) on the modules doesn’t reproduce the real on/off duty cycle.

- The by-passed coupled inputs (that is, inputs having high impedance and internal short cut)

are treated as one input and one output plug. At installation time, TASS always shows this

output plug with a plugged 50 ohm terminator.

- The settable or movable components (button, switch, knob and so on) show a Hand cursor,

when the cursor is over the component itself, see the Cursor summary in section 4.6,
- The screws to set threshold and width show a Screwdriver cursor as well.

- The cursor doesn’t change its shape when it pass over the input and output plugs but it

changes its label in agreement to the selected cabling procedure (see Cabling section).

(*) see https://core.ac.uk /download/pdf/132578818.pdf and also William R. Leo Techniques

for Nuclear and Particle Physics Experiments, ISBN 0-387-17386-2 Springer-Verlag.

32

- The knobs and screws can be turned clockwise by the mouse left button and counter

clockwise by the right button.

- The three position switch moves in round fashion (i.e. up, centre, down, up….) when clicked.

- The monostable push buttons are pressed when the mouse left button is down and released

when it is up. Usually the corresponding action is performed when the button is released.

- The value for threshold, offset, width ecc. are shown by small tip on the menu bar. To show

the tip select Show Meter from Tools menu or press the corresponding button.

- The tip’s color corresponds to different types of measurements in agreement to following

table:

 Color measurement unit

 Yellow width of pulse ns

 Green threshold V

 Light blue output voltage V

 Gray offset V

 Violet special spec

- Use Option … menu to set different behaviour than the default one.

Double click to open the

internal components panel

(Vme partial view)

33

Cabling

TASS provides a full set of functions to do the cabling procedure in a fast and easy way. The

user can make, show and delete the cables in single, multiple and all system connections basis.

By default TASS doesn’t show the cables of the connections to avoid to hide the module panels

in background (in real world you can move the cables to have access to module’s components, but

you can’t on a picture screen). Of course, the user can modify the default setting choosing different

option (see Option section).

Note: Cables connecting the scope never are shown and always they are 8 ns long.

Make connections (Ctrl+M)

To make the connections between plugs you have to select Make Single or Make Any from

Cabling menu. The cursor changes to Make cursor (see later 4.6 Cursor summary section) then you

click on the first plug you want to connect. The plug itself changes style to notify busy plug and

cursor changes to Make+ cursor meaning pending connection in progress. Point the second plug

and click again the mouse, the connection is now established, the length and delay of cable is

automatically computed (see later).

 If you have chosen Make Any the cursor returns to Make cursor, and you can make a new

connection, otherwise it changes to standard cursor.

If the plugs to be connected are on different crates you have to navigate through them selecting

the proper crate in Crate menu.

To erase and/or show a pending connection, click anywhere on the menu bar and answer to the

questions.

In any case the program checks the consistency of type of plugs (Nim/Ecl) and their

functionality (input or output) and notifies by a message an incompatible connection.

Nim (Lemo) connections

TASS computes the minimum cable length, scaled to real world, needed to do the

connection. The assigned cable length is the longer nearest value commercially available

(0.5, 1, 2, 3, 4, 5, 6, 8, 10, 12, 16 ns), for length bigger than 16 ns the computed value is

assigned.

By default the digital scope, being a movable instrument, has inputs always connected

by cables of 8 ns length and they are never shown.

.

Ecl connections (single line)

 For single Ecl the connection procedure is similar to the above Nim connection but, in this

case, TASS doesn’t check for commercial length and takes in account the computed delay.

Moreover the Ecl standard allows to connect on the same line more input plugs in daisy

chain and any plug can have reversed polarity.

Tass implements this features in the following way:

 The first plug of an Ecl connection chain MUST be always the output plug then, one
after another, any other input plugs follow. A small red dot marks the positive pin of the

plug (see Cursor summary).

34

 To reverse the polarity double click on the plug itself, the red dot moves to the other pin

and the reverse polarity of signal is provided.

Delete connections (Ctrl+D)

There are four possible options to delete existing connections: Delete Single, Delete Any, Delete

in Module, Delete All.

 Delete Single or Delete Any changes the cursor to Del cursor (see below) and click on

one of the plugs holding the connection you want drop. If Delete Any has been selected

then you can continue to drop other connections, otherwise the cursor returns to

standard cursor.

 Delete in Module is mainly used when you want to dismount a module from the crate
(you can not remove a module if any plugs is still connected). Click on any plug

belonging to the module then all the connections on that module will be dropped.

 Delete All is useful if you want start from scratch the cabling job, a warning message
will ask you to confirm this choice.

Nim (Lemo) connections

The user points one of two plugs of connection he want delete and clicks the mouse. The

logical connection is dropped and the plugs return to free plug style.

Ecl connections (single line)

 If the user clicks on the output plug then all the Ecl connection chain will be dropped.

 If the user clicks on an input plug then the connection between the selected plug and the

previous one plus any connections between the selected plug and the last plug in the chain

will be dropped.

Show connections (Ctrl+V)

The user can ask TASS to selectively show the cables by Show Single, Show Any, Show

All options. In this case the cursor changes to Show cursor (see below) and cables will be drawn

by black line for Nim connections and grey line for Ecl connections.

The user can choose to show connections by straight lines or by more realistic flex lines. In

both cases the delay length of cables itself will be the computed one (see later section).

TASS never shows cables connecting scope plugs.

Hide connections (Ctrl+H)

35

Selecting this item TASS hides the cables of whole system but any logical connections and

their attributes still work.

Hiding cables makes faster the panel redrawing process. Use this option when you are

navigating across the crate.

Ecl flat cable connection

 Usually the Ecl connections on the multipins plug are done using flat cable bundle (3M

type). TASS gives support to do this job in easy and fast way (see figure).

To do a bundle connection click on the container of the output plug then on the container of

input plug, TASS takes cure to realize the connections for all pins. Repeat this procedure to do a

daisy chain connection. A container when clicked show the closed extractor (black part).

To remove an existing connection click on the extractor of either out or input plug.

Note: It is possible connect only container having the same number of Ecl pin pairs.

36

Connection Info (Ctrl+I)

The best way to trace the cabling of whole system is using the Connection Info option.

Selecting this item the cursor changes to Info cursor (see below) and a small Connection Info

window appears over any other draw (see figure).

Clicking on a plug of the connection you are interested in, the main characteristics of

connection will be reported.

The user can assign a label to the selected connection writing its name in Cable name field.

The Cable Delay field shows the default computed length (in ns)
 (*)

 as the minimal

commercial length allowing the connection.

The default length can be modified overwriting the new

value on Cable Delay field, if the new value is smaller than the

previous one, a warning message will ask to confirm this choice

(this is useful when you foresee to use a fast cable for the

connection).

The Blinking button causes the plugs corresponding to

selected connection to flash allowing a fast and easy tracking.

The Next Plug button is enabled only if the plugs of the

selected connection are on different crates. Clicking on this

button TASS shows you directly the crate where the other plug is

sit.

In Tools\Options\Cabling tab the following options are

available:

- “Trace cable when flashing”

- “Flash whole Ecl chain”

- “Blink rate”

- “Blink number”

(*)

 The speed of signal in cable is computed equal to 5 ns/m.

37

Break Point

TASS provides the capability to break the execution of the running Project when a wished

event occurs
1
. This feature allows the user to trace and to analyse step by step the signals flow.

To set (remove) a break point select Set Break Point (Remove Break Point) from External

Signal menu, the cursor change to Set Brk (Del Brk) then click the plug where you want set

(remove) the break. To notify the inserted (removed) break the plug changes according to the

figures in below "Cursor and Plug Summary" section.

The command Remove all Break Point in External Signal menu will remove the break points

in whole project.

To know which and where the breakpoints are, use the Cable List command in UserList menu.

The set breakpoint will be marked with the corresponding break type flags.

There are three different type of breakpoint:

1) BrkP – Pauses the running program

2) BrkW – Write on file

3) BrkI – Send an interrupt to Daq program

The user can set as many break points as he likes and the breakpoint types can be mixed but

each plug can hold only one type. The assigned type is according to selected one in Tools/Options

table, the selection will affect all the next breakpoint settings.

BrkP - break and pause

When a change on the voltage level occurs the

program pauses and an expanded Connection Info

table is shown. On that, as well as the usual

connection parameters, the elapsed time from

program start, elapsed time from the last break and

the slope of the input pulse is shown too.

Using this type of breaks the user can have the

continuous control of simulation and he can trace,

step by step, the flow of signals and compute the

relative timing from different parts of trigger

system.

To resumes the program push the Run/Cont

command button on TASS main window.

1
 In TASS, we call "event" any change in the level of signal on NIM o ECL plug.

38

BrkW – break and write to file

When a break occurs the following relevant variables will be written to break file and the

simulation continue to run.

By default the break file name is “ProjectName”.brk. The user can change the default name

selecting a new one in Tools/Options table. The .brk extension will be add automatically.

Variables written on break file:

"-3,BrkIsr" = break identifier

nBrk = consecutive break number

PlugName = identifier name of the plug (LemoIn, EclIn etc.)

BrkTime = time elapsed since the beginning of run simulation

Crate = number of crate to which nMod belongs

Station = number of crate station where nMod sits

nMod = number of modules as reported in Title bar (blue bar on top of each modules)

Index = index identifying the plug inside nMod

Value = value of the voltage on the plug measured at BrkTime

BrkEdge = slop of the signal: Leading, Trailing, NoSlop (NoSlop meaning no change in

 voltage signal)

BrkI – break and send interrupt to Daq program (*)

When a break occurs an interrupt is sent to the Daq.BrkIsr routine supplied from Daq program

and the simulation continue to run.

The parameters passed to Daq.BrkIsr are the same as in previous case, that is :

"-3,BrkIsr" = break identifier

nBrk = consucutive break number

PlugName = identifier name of the plug (LemoIn, EclIn etc.)

BrkTime = time elapsed since the beginning of run simulation

Crate = number of crate to which nMod belongs

Station = number of crate station where nMod sits

nMod = number of modules as reported in Title bar (blue bar on top of each modules)

Index = index identifying the plug inside nMod

Value = value of the voltage on the plug measured at BrkTime

BrkEdge = slop of the signal: Leading, Trailing, NoSlop (NoSlop NoSlop meaning no

 change in voltage signal)

This is the most powerful type of breakpoint, indeed the user, in the external Daq program, can

selectively analyse the forwarded parameters and take the suitable actions. For instance, he can

histogram the delay time between two critical points or to count how many hits arrive on a

predefined input and so on.

(*)

 Concerning the Daq program and interrupt handling, see later “Remote Daq” section

39

Cursor and plug summary

Panel Picture
ToolBox

picture

Picture folder

(in ComponentBMP/)

Source code file

(in ComponentSource/)

Ecl_17x7/ Ecl_Hor

Ecl_17x7/ Ecl_Vert

Ecl.ctl
(Standard not

connected)

Ecl_Vert_Busy

Ecl_Hor_Busy

Gray color

(Busy)

Ecl_Vert_Busy (invert)

Ecl_Hor_Busy (invert)

Gray color

(Busy)

Ecl_Vert_File

Ecl_Hor_File

yellow color

(input data file)

Ecl_Vert_File (invert)
Ecl_Hor_File (invert)

yellow color

(input data file)

Ecl_Vert_Break

Ecl_Hor_Break

light blue color

(breakpoint)

Ecl_Vert_Break (invert)

Ecl_Hor_Break (invert)

light blue color

(breakpoint)

Cursor’s picture changes according to the selected function or selected component. In

particular the screwdriver picture appears when the cursor is over a screw for setting of specific

behaviour (threshold, width, delay etc.), the hand picture when cursor is over pushable/moveble

components (button, switch, knob etc.).

 Standard Lemo plug, not connected

Standard Lemo plug, connected

(gray color)

 Standard Lemo 50 Ohm terminator

Standard Lemo plug, connected to

data file (yellow color), see later.

Standard Lemo plug, connected to

break point (light blue color)see later

Screwdriver-cursor, used to turn

the setting screw on modules

Hand cursor, general purpose cursor

used to handle components on module
Make connection (pending plug)

Delete cursor, to remove a

connected cable

Show cursor, to show the

connected cables

Info cursor, to list cable

connection properties

Breakpoint cursor, to set

and remove hardware

breakpoint

CTRL+Z To reset the cursor to standard cursor

Make connection (first plug)

40

5. Remote Tcp/Ip communication

Starting since Vers.4.0 has been introduced the new feature allowing TASS to be connect on the

Internet network via Tcp/Ip protocol. This capability opens a new class of possible use of TASS

system, that is:

 The full integration with the real Daq program can be easily achieved by the exchange of

Camac and/or Vme command via Tcp/Ip communication (see next “Remote Daq” section).

 TASS can accept data issued from data file representing external electrical signals and send

data to output file. This feature enable TASS to fill the gap between the existing packages

for physics simulation (i.e. Geant) and the analysis program (i.e. Root) Fig.1, (see next

"External Signal Data File " section).

 TASS can accept input data representing external electrical signals and send output data via
a Tcp/Ip internet connection. This new feature promotes TASS to become not only a

simulator but also a very powerful monitor of hardware trigger system (see next “Remote

Hardware Monitor” section).

Overview of networking

 Now we have to discuss a bit on the "Tcp/Ip Network" that we are going to use.

 As well known two computer can be connected in different way depending from where they

are sit.

- Word Wide Web
In this case all the structure of the web has to be available, in fact the computers are behind

some Internet Service Provider (ISP) and all the work of "Network Address Translation"

(NAT) is done by the same ISP.

The present version of TASS can't handle this feature, but TASS can carry out its full

functionality if a fix Ip number is provided.

Then if you foreseen to connect at remote computer in www you have to provide a fix

Ip address for computer running TASS.

- Local Area Network
This is the most frequent case in the real experiments.

In this case the computers (server and client) are sit on the same local internet subnet, then

there is no need for the TASS computer to communicate to the external world. Indeed the

communication between TASS and remote computers is handled simply by the router

connecting both.

Consider that the router task can be done also by a cellular smart phone prepared to work as

"personal hotspot", also without SIM telephone card.

In any case to know the Ip number assigned from the router to the TASS computer you can

open the menu "Help/About TASS" and watch the IP number in blue character, it should

have the form 192.168.XXX.XXX where the "X" part depend from network connection.

41

6. Remote Daq

Camac and Vme are the most used standards for data acquisition and control in high energy

physics experiments. As in the real world, where the Daq program steers the flow of commands to

the hardware, as well in TASS the Daq program handles the virtual hardware. In both cases
(*)

, the

Esone/Vme

library routines are the interface between Daq program and hardware modules.

As already mentioned the user can develop the real Daq program, using the final computer

and the preferred operating system and programming language, in an environment where the real

hardware is replaced by its TASS simulation and the cable connection to the Daq computer is

replaced by the exchange of Camac/Vme commands via Tcp/Ip network communication (see

following figure). This philosophy has important consequences:

 User can choose the best integration between hardware and software without any
involvement of real hardware.

 Different parts of Daq and trigger programs can be developed simultaneously among more
users even from worldwide spread sites.

 Comparison among different architectures can be done based on software simulation.

 None waste time for delivery delay of unavailable hardware.

 The documentation and the history of design process it’s a built-in feature of TASS.

 Training of new users and/or updating of existing set up can be done without any
involvement of real hardware.

(*)

In real world the standard Esone library provides routines to handle only the Camac modules as defined by the EUR

4100 and EUR 4600 recommendations. In TASS the routines supporting Vme interaction have been grouped together

with the Esone routines in the EsoneVme class.

Tcp/Ip network

Computer running TASS

simulating real hardware

(Server)

Daq computer

(Client)

42

 To achieve the above goals, TASS package supplies the software RemoteDaq class
(*)

providing the interface between the external Daq programs (user responsibility) and the TASS

environment. At present, supports for C++ and Java (in form of class), LabView (in form of VI) and

Visual Basic (in form of .OCX control) are provided.

The supplied RemoteDaq class (in the box on the right side figure) allows writing the Daq

Camac/Vme calls in the same way as in the real world making the translation process, between the

external Daq environment and the TASS system, fully transparent from user’s point of view.

Actually the user refers Camac and Vme hardware registers calling the standard Esone and standard

Vme routines. The RemoteDaq class takes cure to translate the commands in suitable formatted

messages and to send them over the network to TASS simulation computer.

Interrupts produced by TASS are treated in similar way and they provide events (in term of

Visual Basic ‘event’ or ‘call back procedure’ for other languages) that triggers suitable procedures

in user Daq program (refer to “RemoteDaq class for communication protocol” section).

The following figure summarizes the work done by the RemoteDaq class.

To handle the source of commands, open the Tools/Option... menu, then in Daq/Break tab in Daq

program frame, you choose (see following figure)

 No Daq
If none Daq program is foreseen (i.e only Nim modules used)

(*)

 The RemoteDaq Class is issued as separate package please download it from usual site www.top1.it/tass

Remote DAQ computer

(client)

Daq Program

Tcp/Ip network

Tcp/Ip socket

Esone/Vme

routines

Interrupt

generator

TASS simulation

TASS Computer

(server)

Tcp/Ip socket

Esone/Vme

interface

Interrupt

handler

RemoteDaq class

http://www.top1.it/tass

43

 Remote computer

If the Daq program is resident on different client computer (by default the port 1003 is

reserved for Tcp/Ip communication). The Ip Address of TASS computer is shown, too
(*)

.

 File
If the Daq program (in .dll or .exe format) is resident on the same TASS computer

Of course the RemoteDaq class is depending from the operating system and language

environment and few small differences can arise between them, nevertheless the following general

features can be drawn.

 TASS always works as server computer and it reserves the port number 1003 for
communication with external Daq program (see following “Overview of

networking”). The server local Ip address is available on form open by Help/About

TASS menu.

 To handle the RemoteDaq communications, select in TASS main window the
Tools/Options menu and in the Daq/Break tab check the Remote Computer check

box

 Always TASS simulation has to be started by the Run/Cont button or menu.

(*)

Alternately, to know the IP number of the TASS server computer you can use the "Help/About TASS..." menù

44

 The set of Camac/Vme commands handled by RemoteDaq class reproduces the

Esone and Vme library routines (see RemoteDaq class for communication

protocol section).

 The commands and interrupts are based on the exchange of ASCII message strings.
For each Camac/Vme command sent to TASS an acknowledge message is generated

upon the command has been executed. This ensures the synchronization between

server and client tasks.

 No acknowledge has to be produced by the Daq program in answer to any interrupts.

RemoteDaq Programming Model

Here we report some main considerations that we have to take in account when programmable

modules (Camac and Vme) are used. In the following examples we use the Visual Basic language

and we suppose to use the TassRemoteDaqCntr control (located on Form1 form) that formally

handles all the EsoneVme and the network communication procedures, see later. Analog

considerations can be done if other languages are used, infact the supplied RemoteDaq classes solve

any usual needs.

Camac and Vme register references (only for Visual Basic)

The Camac and Vme standards foresee a slightly different way to address the internal registers

of their modules.

In the Camac case the external hardware is mapped as external computer I/O, while in the Vme

case it is mapped as external computer memory. From this follows that in Camac we have to define

a variable holding a reference to the address module register by the function CDREG and then

execute operation on that by the foreseen function (CSSA in following example).

 Dim DaqCntr as Object ' define DaqCntr variable as Object

 Dim Adc0 as Variant ' define a variable to hold the reference

 …….

 Set DaqCntr = Form1.TassRemoteDaqCntr ' take reference to TassRemoteDaqCntr control

 DaqCntr.CDREG Adc0, br, cr, AdcStation, SubAdd0 ' take the reference Adc0 to the

 ' external address register defined by

 ' branch=br, crate=cr, station= AdcStation

 ' and subaddress= SubAdd0

 DaqCntr.CSSA 16, Adc0, Data, q ' write (func=16) on the register defined

 ' by Adc0 the data=Data and return q status

 DaqCntr.CSSA 0, Adc0, Data, q ' read (func=0) from the register defined

 ' by Adc0 and return Data and q values.

In Vme case, being the module register allocated in memory address space, the real Daq

program can refer it by simpler read/write instructions, i.e:

rData = *Reg ' read data from Reg

*Reg = wData ' write data into Reg

45

Where the *Reg is a pointer variable pointing to the effective hardware memory address.

In the TASS environment we can’t use the same syntax because the *Reg can’t represent the

register locations of a simulated module. To make the Daq code, as much as possible similar to the

code that user would write in real world, TASS provides two property procedures solving this

aspect (this is valid only in Visual Basic world):

Private Property Get Reg(RegAdd As Long) As Long

 DaqCntr.VmeRW RegAdd, 0, Reg ‘Function 0 = read

End Property

Private Property Let Reg(RegAdd As Long, ByVal NewValue As Long)

 DaqCntr.VmeRW RegAdd, 16, NewValue ‘Fnction 16 = write

End Property

Now, as similar way as previous example, we can refer to Reg address, that is:

 rData = Reg(RegAdd) ' read rData from register locate at address RegAdd

 Reg(RegAdd)= wData ' write wData into register locate at address RegAdd

Indeed all the link between register value and its defined hardware location is done by the above

property procedures and by the DaqCntr.VmeRW called routine, see example code in

\Sample\TcpIp_Protocol\EEE\EEE_Client_Daq\ EEE_Client_Daq.vbp.

Real world vs. virtual world

As well known, in real world usually there are two way in which the Daq program interacts with

hardware :

 Interrupt handling

 Polling technique

In the first case the Daq program is, most of time, either idle or doing something else (i.e.

histogram). Only when the hardware requests attention (interrupt) then the Daq program executes

the foreseen routines to answer to those interrupt. This is known as asynchronous process.

In the polling technique, vice verse, the Daq program is in a loop always checking a flag used as

semaphore. When the hardware demands attention, it sets the flag to notify to Daq program an event

occurred. Only then, the Daq program exits from loop and executes the foreseen routines to answer

to that event. This is known as synchronous process.

In real world, therefore, there are two different environments: the hardware and the Daq software

each one doing its own job and the link between them is either the interrupt or the semaphore.

The interrupt method, interacting very closely with operating system, has a fast response time

but the programmer has take cure how to code, especially if concurrent programs are running. For

these reasons it is usually used in large or long term set up.

The polling method, being simpler to code and to maintain, is used in small or temporary setup.

TASS can handles both techniques. In conclusion TASS simulates very well the real world, in

fact :

46

a) Using interrupt, the Daq program responds very fast to the events. The write of interrupt service

routine is the price the programmer has to pay.

b) Using polling, the Daq program responds slower but the Daq itself is simpler to write and to

maintain.

The taste and needs of the user will determine which philosophy to choose.

RemoteDaq class for communication protocol

As already mentioned the TASS package provides the RemoteDaq class for most of software

environments used in the nuclear and particles physic field. In this section we’ll give a description

of the communication protocol to perform Camac and Vme commands between TASS and the

remote Daq system. User can find the source code of RemoteDaq class for each supported language

in the corresponding folder supplied by RemoteDaqClass installation package. User can freely

modify that code or use it as guide to develop class for languages and/or operating systems not

supported in the present version of TASS system.

No matter which language or operating system you are using, always the RemoteDaq class

exposes general methods to provide an interface versus the Camac and Vme standard commands

and, moreover, there are some few methods used to handle the network communication.

In the following list we report the callable methods provided by the Visual Basic control

TassRemoteDaqCntr.ocx
(*)

. For any other language the user can find similar methods proper of

the used language. Help files can be found in the corresponding folders.

Methods related to network communication

OpenConnection (sRemoteHost As String, [lngRemotePort As Long = 1003])

Open a Tcp/Ip connection on remote host sRemoteHost using the default port 1003.

sRemoteHost accept both format: Ip number (i.e. 141.108.7.32) and Ip address (i.e. tass.cern.ch). In

case the server and client computer are the same, then sRemoteHost = LocalHost or

sRemoteHost = 127.0.0.1 (See also above "Overview of networking" to know the IP number

assigned to TASS computer).

(*)

 List of code for the TassRemoteDaqCntr.ocx control is available dowloading the RemoteDaqClass.zip package

from the www.top1.it/tass web site.

47

CloseConnection

Close the existing Daq communication socket connection.

CommStatus Read only Property

Return the status of Daq communication socket:

0 = sckClosed

1 = sckOpen

2 = sckListening

3 = sckConnectionPending

4 = sckResolvingHost

5 = sckHostResolved

6 = sckConnecting

7 = sckConnected

8 = sckClosing

9 = sckError

Methods for Camac and Vme control

 **************** VME handling functions ********************

 int getReg(int regAdd)

 return un integer value read from regAdd register

 void setReg(int regAdd, int data)

 set the register regAdd with the integer data value

**************** CAMAC handling functions ********************

For each of following methods TASS provides a test on Camac dataway line X to check if the

addressed module is present, if it is not an error is reported.

In Tools/Options/GeneralOption tab you can disable this feature.

48

CDREG (ExtRef As String, Br As Long, Cr As Long, St As Long, SubAdd As Long)

 Defines the Ext physical address corresponding to a given Camac unit.

 ExtRef The encoded physical address

 Br Branch number of Camac Crate Controller

 Cr Crate Controller number

 St Camac module station number

 SubAdd Camac subaddress module’s registers

CSSA (ByVal Func As Long, ExtRef As String, Data As Long, QResp As Boolean)

Read/Write Camac register in single word (24 bit)

Func Camac function

ExtRef Camac physical address as defined in CDREG function

Data Camac read/write data (24 bit)

QResp Q response of the last Camac operation. Q=true if Camac Q=1

CCCC (ExtRef As String)

 Execute C Camac function

ExtRef Camac physical address as defined in CDREG function

CCCZ (ExtRef As String)

 Execute Z Camac function

ExtRef Camac physical address as defined in CDREG function

CCCD (ExtRef As String, DFlag As Long)

 Set or clear Demand line on Crate Controller

ExtRef Camac physical address as defined in CDREG function

DFlag Action flag. If DFlag=0 clear else set Demand Crate

CCCI (ExtRef As String, IFlag As Long)

 Set or clear Inhibit line on Crate Controller

ExtRef Camac physical address as defined in CDREG function

IFlag Action flag. If IFlag=0 clear else set Inibit Crate Controll

CCINIT (ExtRef As String)

 Initialize Crate Controller clearing Inhibit and setting Demand lines.

ExtRef Camac physical address as defined in CDREG function.

49

Interrupt from TASS

TASS can produces simulated interrupts (LamIsr)
(*)

 in the same way as the real hardware does.

Moreover TASS can request attention to the Daq program for Daq initialization (DaqInit), in

occasion of a break point (BrkIsr) or in order to send general message to Daq (GeneralMessage).

All this requests (generally called interrupts) will be forwarded to the Daq program issuing a proper

message via the Tcp/Ip connection. The message takes the following format

intFlag, parameter1, parameter2, …

where the parameters list is comma separated.

intFlag parameters meaning

-1 DaqInit Daq initialization request by TASS.

Usually this interrupt is sent by TASS

when the user chooses the ResetRun menu

-2 LamIsr Standard interrupt from TASS.

The same as in real hardware

-3 BrkIsr, nBreak, PlugName, BrkTime,

Crate, Station, nMod, Index,Value,

brkEdge

Usually this interrupt is sent by TASS

when a break point is actived on any plug

(see BreakPoint on Cabling section)

-4 GeneralMessage,MessageTitle,

MessageText

General message from TASS server.

Usually this interrupt is very useful when

debuging code of a new module under

development.

For their nature the interrupts are asynchronous respect the normal flow of the Daq program, that

means that they have not an acknowledge to any Camac/Vme command.

See the Libraries section for description of Interrupt call.

About the BrkIsr interrupt the parameters have the following mean:

nBreak = number of break enumerator

PlugName = identifier name of the plug (LemoIn, EclIn etc.)

BrkTime = time elapsed since the beginning of program

Crate = number of crate to which nMod belongs

Station = number of crate station where nMod sits

nMod = number of modules as reported in Title bar (blue bar on top of each modules)

Index = index identifying the plug inside nMod (use the Connection Info tool to know the

 plug index number)

Value = value of the voltage on the plug measured at BrkTime

BrkEdge = slop of the signal: Leading, Trailing, NoSlop (NoSlop meaning no change in

 voltage signal)

(*)

 LamIsr is the acronym for Look At Me Interrupt Service Routine, the standard name used in Daq language

50

Example for Visual Basic RemoteDaq.

Here we report the fundamental steps to implement the communication protocol between the

TASS and the remote computer running the Daq program.

We’ll take as example the RemoteDaq_TestAdc_Lam program already used in several occasions.

For this purpose will use the Visual Basic language and the TassRemoteDaqCntr Control that

has been already installed by the TASS installation process.

If user want use a different language he has to install on Daq computer the TassRemoteDaq

class compatible with the operating system and language in use (refer to "To install TASS" section)

The RemoteDaq_TestAdc

 In the following example we’ll use, as usual, the RemoteDaq_TestAdc_Lam.trg (see Fig.2

in the “Introduction to TASS” section) small setup reproduced in the following block diagram and

we’ll use Visual Basic program languages to write the simple test Daq program.

Status A
Input

Output

PM pulse

generator

Discrim

inator

Time

Unit

 ADC
Gate

Input

Cable delay

C

A

M

A

C

D

A

T

A

W

A

Y

 Scaler
Bit 0

Bit 1

51

The Sample package, installed together Tass, provides two Daq programs both located into

Sample\TcpIp_Protocol\RemoteDaq_Adc folder: RemoteDaq_TestAdc_Lam.exe and

RemoteDaq_TestAdc_Polling.exe using respectively the interrupt handling and polling technique.

User can use these programs without any external support; nevertheless, if he wants to do any

changes to the programs, he needs the Visual Basic 6 compiler available

To try this example

 on TASS computer (server)

 start TASS

 load the RemoteDaq_TestAdc_Lam.trg trigger setup file

 Start the simulation by the Run/Cont button

 Move switch on NimWave generator in Run position

 On Daq computer (Client)

 Start the RemoteDaq_TestAdc_Lam.exe program

 In the appearing input box insert the name or Tcp/Ip number address of the remote computer
runnig TASS (open the Help/About Tass menu to know the IP number assigned to TASS

computer). The Daq program start to collect and histograms the acquired data.

If user want modify any part of Daq program:

 On Daq computer (Client – with Visual Basic 6 installed)

 Start the Visual Basic.

 In the Windows Explorer navigate and double click on RemoteDaq_TestAdc_Lam.vbp in
\Sample\TcpIp_Protocol\RemoteDaq_Adc\RemoteDaq_Adc_Lam folder.

 Visual Basic starts, change any part of code then run the program.

To try the polling technique replace the RemoteDaq_TestAdc_Lam.exe in the previous step with

the file RemoteDaq_TestAdc_polling.exe.

How it works

The Pulse Generator produces simulated photomultiplier signals, the Discriminator and the Time

Unit produce the gate for ADC. The StatusA and the Coincidence logic allow only one event at

once be sent to the ADC. The Scaler counts the number of event treated. The length of cables is

chosen to match the proper delays. The interrupt will be generated from ADC at end of conversion

time.

Refer to the data sheets of constructors to know how each module works.

52

Upon the client program starts the run, a request for connection will be send to TASS computer

and, if any thing is ok, a connection will be established. The TASS simulation on the server

computer, for each suitable triggered event, will produce an interrupt that will be sent to the client

via network
(*)

.

On the client side, the reception of interrupt message will activate in Form1.frm the

corresponding TassRemoteDaqCntr_LamIsr procedure that, in turn via a call to InterruptService

procedure, requires the read of Camac Adc and Scaler modules then the resulting values will be

histogrammed and written on the Test.daq file.

Visual Basic allows user to trace the Daq program stepping instruction by instruction and using

whole standard debug procedure supplied by the environment.

In the following programs list what concern the Camac, Vme and histogram packages please

refer to the proper Libraries section.

Note: you can found an equivalent Daq program written in Java in

TassProject\RemoteDaqClass\RemoteDaqJava\RemoteDaqJava_Lam pakage

(*)

 The interrupt is a special message, see later Communication protocol for RemoteDaq class.

53

Client RemoteDaq_TestAdc_Lam.vbp Program Code

=============== partial Code in Form1.frm ===============

Private Sub TassRemoteDaqCntr_ClosingConnection()

 MsgBox "Connection closed by server", vbOKOnly, App.Title

End Sub

Private Sub TassRemoteDaqCntr_error(ByVal Number As Integer, Description As String)

 MsgBox Number & ", " & Description, vbOKOnly, App.Title

 If Number = 21 Then End

End Sub

Private Sub TassRemoteDaqCntr_LamIsr()

 Call InterruptService

End Sub

=============== Code in Module1.bas ===============

'Declare Objects

Public DaqCntr As Object

'Declare variables used in CDREG references

Public Adc0 As String 'reference at Adc channel 0

Public Adc1 As String 'reference at Adc channel 1

Public Scaler0 As String 'reference at Scaler channel 0

Public Scaler1 As String 'reference at Scaler channel 1

Public StatA0 As String 'reference at StatusA channel 1

Public StatAMask As String 'reference at StatusA Mask register

'...... 'any other references go here

'Declare any other global variables

Dim q As Boolean

Public DataLun As Long, TotEv As Long, NEv As Long

Public BlockNum As Long, Index As Long

Public DataMessage As String, DataValue As Single, DataTime As Currency

Public Timer0 As Single

'...... 'any other reference goes here

Public Sub Main()

Dim RemoteAddress As String

'Visual Basic starting procedure for client Daq program

 Set DaqCntr = Form1.TassRemoteDaqCntr 'define reference Object for DaqCntr library

 RemoteAddress = InputBox("Insert the remote Tcp/Ip address." & vbCrLf & _

 "It can be either the Tcp/Ip number or its address name", _

 "Remote Daq", "top1.roma1.infn.it")

 DaqCntr.OpenConnection RemoteAddress

 Call Initialize

End Sub

54

Public Sub Initialize()

'This routine is used to initialize the Camac and program variables

Dim NameFile As String

Dim br As Long, cr As Long

Dim AdcStation As Long, ScalerStation As Long, StatusAStation As Long

Dim SubAdd0 As Long, SubAdd1 As Long

Dim Mask As Long

Dim Data0 As Long, Data1 As Long

Dim CounterData0 As Long, CounterData1 As Long

'...... 'any other variable definition goes here

 Close 'close all active open files

 NEv = 0 'current event

 TotEv = 50000 'total events

 NameFile = CurDir & "\Test.daq" 'set file name where put read data

 DataLun = FreeFile 'get free Logical Unit

 Open NameFile For Output Access Write As DataLun 'open file

'initialize and book histograms

 Form1.cntrHBook(0).HBook " data0", 0, 400, 100 'book histos for Adc Ch 0

 Form1.cntrHBook(1).HBook " data1", 0, 200, 50 'book histos for Adc Ch 1

 Form1.cntrHBook(2).HBook " system time", 0, 10, 100 'book histos for system clock

 Form1.cntrHBook(3).HBook " dead time", 100, 150, 100 'book histos for dead time (microsec)

'initialize the Camac

 br = 3 'Branch number as defined in Layout form

 cr = 2 'Crate number as defined in Layout form

 AdcStation = 2 'in this Station put LeCroy ADC_2249

 ScalerStation = 4 'in this Station put CAEN Scaler C257

 StatusAStation = 6 'in this Station put CAEN StatusA C236

 SubAdd0 = 0 'sub address for Adc channel 0

 SubAdd1 = 1 'sub address for Adc channel 1

 DaqCntr.CDREG Adc0, Br, Cr, AdcStation, SubAdd0 'define DaqCntr register Adc0

 DaqCntr.CDREG Adc1, Br, Cr, AdcStation, SubAdd1 'define DaqCntr register Adc1

 DaqCntr.CDREG Scaler0, Br, Cr, ScalerStation, 0 'define DaqCntr register for scaler Ch 0

 DaqCntr.CDREG Scaler1, Br, Cr, ScalerStation, 1 'define DaqCntr register for scaler Ch 1

 DaqCntr.CDREG StatA0, Br, Cr, StatusAStation, 0 'define ch 0 register for StausA

 DaqCntr.CCCZ Adc0 'initialize Camac crate

 Mask = &H401 'define mask = enable inp+Busy ch 0 (1)

 DaqCntr.CSSA 17, StatA0, Mask, 0 'write StatusA Mask Register

 DaqCntr.CSSA 9, Adc0, 0, 0 'reset Lam and Adc module

 DaqCntr.CSSA 10, StatA0, 0, 0 'reset StatusA /Busy output

 DaqCntr.CSSA 26, Adc0, 0, q 'enable Adc Lam

 Timer0 = Timer 'up to date system time

End Sub

55

Public Sub InterruptService()

Dim Data0 As Long, Data1 As Long, CounterData As Long

'this routine (Interrupt Service Routine) handles any Lam from

'the Camac module

 DoEvents 'leave time to OS

' Beep 'sound to notify a new event

'execute camac function

 DaqCntr.CSSA 2, Adc0, Data0, q 'read ADC ch 0

 DaqCntr.CSSA 2, Adc1, Data1, q 'read ADC ch 1 (only pedestal on this channel)

 DaqCntr.CSSA 0, Scaler0, CounterData, q 'read scaler ch 0

'=== write data to file

 Write #DataLun, NEv, " Adc0,Adc1,Scaler,Time ",Data0, Data1, CounterData, Timer

'=== write data to window

 With Form1.TextBox

 If Len(.Text) > 10000 Then

 .Text = Mid(.Text, 5000) 'cut text in TextBox

 End If

 .Text = .Text & vbCrLf & _

 " Adc0,Adc1,Scaler " & _

 Data0 & " " & Data1 & " " & CounterData

 .SelStart = Len(.Text)

 End With

'=== fill the histograms

 Form1.cntrHBook(0).HF1 CSng(Data0) 'histos Data0

 Form1.cntrHBook(1).HF1 CSng(Data1) 'histos Data1

 Form1.cntrHBook(2).HF1 CSng(Timer - Timer0) 'compute the esecution time per event (0.1 sec/bin)

 Timer0 = Timer

 Form1.cntrHBook(optHistoIndex).ShowHist 'refresh all visible histos

 NEv = NEv + 1 'count the events

 If NEv = TotEv Then

 Close DataLun 'close open file

 DaqCntr.CloseConnection

 End 'close properly the link with TASS

 End If

'==== reset the hardware

 DaqCntr.CSSA 9, Adc0, 0, q 'reset Lam and Adc module

 DaqCntr.CSSA 10, StatA0, 0, q 'reset StatusA /Busy output

End Sub

56

Full simulation of Extreme Energy Events Detector and Daq

In this second example we’ll show a full simulation of a real (small) experiment, please refer to

http://www.top1.it/Tass/TassManual/EEE_InternalNote.pdf (see also https://eee.centrofermi.it) for

any details. The EEE experiment aims to study the behavior and origin of very high energy cosmic

rays using a telescope made by 3 MRPC detectors.

Our simulation consists in two parts (see figure):

 the server computer provides support for both tasks: the generator of physical events

(the cosmic rays) and the TASS program.

 the client computer runs the data acquisition and analysis program (Daq).

Indeed, the event generator and the TASS program talk each other via network protocol also if,

really, they are sitting on the same computer. The protocol used is just that described in

"External Tcp/Ip signal data" in previous “Remote Tcp/Ip Communication” section.

Note that TASS program works as client respect to the event generator but as server respect to

the Daq program.

The event generator produces muons with cos
2
 (Theta) distribution impact angle on the detector

and provides strip’s signals that will be collected and sent to TASS trigger simulation.

The Time Of Fligth (TOF) and the strip's delay for each hit is computed and sent to TASS input

of Caen_V1190B module

 The event generator produce also a FastOr signal (one for each plane) when the corresponding

plane is hit. The FastOr signals are sent to FanIn-FanOut (mod.N454) front end Nim module and

merged all together to produce a triple coincidence. A veto input, under computer control by the

/OR output from StatusA modules (mod. V977), the coincidence handles the correct handshake

(see also the equivalent The RemoteDaq_TestAdc section).

 Each event will be processed as in the real hardware then, for events fulfilling the trigger

request (all planes hit), an interrupt will be generated to alert the Daq program. Upon the Daq

receive the interrupt, suitable Vme comands will be issued to collect data and the relevant

analysis will be done to extract the cos(Theta)and Cos(Phi) distribution.

Server Side

To try this example we need a server computer running Windows operating system and

connected to the network (see the previous Overview of networking section to know the Ip number

assigned to TASS computer), then proceed in the following step:

http://www.top1.it/Tass/TassManual/EEE_InternalNote.pdf
https://eee.centrofermi.it/

57

1. On the server computer install the TASS package (see “To install TASS” section).

2. In the /Sample/TcpIp_Protocol/EEE/EEE_Server folder run the

EEE_EventGenerator.exe program.

3. Start the event generator by Run button. The trace of random cosmic are shown.

(As usually, if the Visual Basic system is present on the server, you can edit and modify any part of code (refer to

Microsoft Visual Basic documentation), opening the EEE_ EventGenerator.vbp.)

Running the EEE_EventGenerator.exe program, you will get the following picture showing a

schematic view of the EEE detector.

3D representation of EEE simulated events

58

The detector’s graphical representation consists in two parts:

 The 3D display on the left, based on the cntr_Display3D.ocx. This is a general purpose 3D

display that has been installed by TASS installation procedure and anyone can use it, refer

to its manual in the EEE_Server folder.

 The command section, on the right side, where several cntr_Display3D.ocx features are
handled.

Again on the server computer, start TASS and select the simulation trigger set up

/Sample/TcpIp_Protocol/EEE/EEE_Server/EEE.trg, which sketch and picture are reproduced in

the following pictures.

On TASS window select Tool/Options… menu and :

1. in the External Signals tab make sure, in the input signals from... frame, the Remote

computer option box is selected, then write down the Tcp/Ip address “127.0.0.1” (this is the

LocalHost address) and the default port numbers 1001
 (*)

.

2. in Daq/Break tab make sure the Remote computer option is selected. Take note of

Ip Address number in "This local server TASS" frame, then Ok button.

3. Start the simulation by Run/Cont button in TASS main window.

(*)

 Of course the events generator program can be on a different computer where TASS is running, in this case

introduce in the address field the corresponding Tcp/Ip number.

59

skim of acquisition system

T

D

C

T

D

C

T

D

C

S
ta

tu
s

A

Delay Time

Unit

Nim-Ecl

converter

o

clr

1

2

3

Vme

SCALER

L

R

L

R

L

R

F
ro

m

M
R

P
C

d

et
ec

to
rs

 d

el
a
y
ed

 s
ig

n
a
ls

 2
0
0
 n

s
b

y
 c

a
b

le
s

L = 24 input from left side of MRPCs

R = 24 input from right side of MRPCs

clr

clr

prompt OR

250 ns

/OR

ch 0

veto

interrupt

F
a

s
t

O
R

60

Trigger system (Nim crate) of EEE.trg

Used modules for full set up

TDC = Caen V1190B Scaler = Caen N145

StatusA = Caen V977 Nim-Ecl = Caen N92

Coincidence = Caen N405 Fan Out = Caen N454

Time Unit = Caen N93B

61

Trigger system (Vme crate) of EEE.trg

Distribution of recostruct Theta e Phi angles

(*)

done by the client Daq program

The incoming External Data Signals, provided by the events generator, sent via local network will

be associated to the corresponding TDC input as defined in the EEE.trg file. User can see the full

association list by UserList/SignalConnectionList menu. To remember how to do this procedure

refer to How to assign an external Tcp/Ip input signal to input plug next section.

User can see on the scope the flickering incoming signals of the FastOr output from the detector

planes 1 and 2 and the number on the counter increasing.

(*)

 The peak at zero degree in cosPhi histogram is due to an artifact of muon direction reconstruction

62

Client Side

As well already said, the client Daq program can be written in any languages and under any

operating system you like. Here we report the Visual Basic version, Java version follows.

We have to connect the Daq program running on the client computer, then run the

Sample/TcpIP_Protocol/EEE/EEE_Client_Daq/EEE_Client_Daq.exe

Upon the program starts, it asks for a Tcp/Ip connection to the server, type in the Ip Address you

have took in note earlier in the server side setting (otherwise you can see the previous Overview of

networking section to know the Ip number assigned to TASS computer), if everything is correct, a

communication will be established (a sound warn you a connection has been established !).

For each triggered event in the server (events having all the planes hit) an interrupt is sent to client

Daq program that will handle all the suitable commands to collect data from TASS simulation and

to fill the histograms
(*)

.

The Daq program (in Visual Basic language) is shown in following pages, the Java version follows.

The most relevant code is inside the routines Initialize and InterruptService called respectively at

begin of start up and any time the hardware interrupt signal occurs.

In the Initialize procedure the Caen_V1190B TDCs have been programmed to work in Continuous

Storage Mode (see Caen_V1190B manual) that means the inputs work as start signal and the Clr as

a stop signal.

The triple coincidence of the Fast Or signals provided by the front end electronics of each

chamber, with suitable delay has been used to shape the Clr signal to TDC. The interrupt signals

will be generated by the StatusA module (Caen V977). Each interrupt will activate a call to the

InterruptService procedure of the EEE_Client_Daq.exe program (see listing). In this procedure

the Vme modules will be read out and the relevant parameters, Cos(phi) and Cos(Theta), computed

and displayed on the histograms.

(*)

 If, on the client computer, you have installed the Visual Basic framework you can edit and recompile any source

code of Daq program.

DoubleClick on Sample/TcpIp_Protocol/EEE/EEE_Client_Daq/EEE_Client_daq.vbp

63

Visual Basic Client EEE_Remote_Daq.vbp Program Code

=============== Code in EEE_Daq.bas module ===============

Public Sub Main()

Dim RemoteAddress As String

'Visual Basic starting routine DO NOT change or erase

 On Error GoTo errHandler

 Set DaqCntr = EEE_frmHist.TassRemoteDaqCntr

 RemoteAddress = InputBox("Insert the remote Tcp/Ip address." & vbCrLf & _

 "It can be either the Tcp/Ip number or its address name", _

 "Remote Daq EEE", "IpNumber of your server computer")

 DaqCntr.OpenConnection RemoteAddress 'request connection to server

 Call Initialize

 Exit Sub

errHandler:

 MsgBox Err.Source & ", error n. " & Err.Number & vbCrLf & Err.Description

 End

End Sub

Public Sub Initialize()

Dim br As Long, cr As Long, StatusAStation As Long

Dim Mask As Long

 DaqCntr.TassResetRun 'reset hardware at idle state

 EEE_frmHist.cntrHBook1.HBook "cosPhi", -1, 1, 100

 EEE_frmHist.cntrHBook2.HBook "cosTheta", 0.5, 1.5, 100

 BaseAdd(1) = &H100000 'base address for Caen_V1190B in stat 1

 BaseAdd(2) = &H200000 'base address for Caen_V1190B in stat 2

 BaseAdd(3) = &H300000 'base address for Caen_V1190B in stat 3

 BaseAdd(4) = &H400000 'base address for Caen_V997 in stat 4

 Reg(BaseAdd(1) + &H100A) = 0 'set interrupt level V1190B in stat 1

 Reg(BaseAdd(1) + &H1022) = 3 'Almost Full Level V1190B in stat 1

 Reg(BaseAdd(2) + &H100A) = 0 'set interrupt level V1190B in stat 2

 Reg(BaseAdd(2) + &H1022) = 3 'Almost Full Level V1190B in stat 2

 Reg(BaseAdd(3) + &H100A) = 0 'set interrupt level V1190B in stat 3

 Reg(BaseAdd(3) + &H1022) = 3 'Almost Full Level V1190B in stat 3

 Reg(BaseAdd(4) + &HE) = 3 'interrupt mask for V977 (all channel enabled)

 Reg(BaseAdd(4) + &H20) = 7 'interrupt for V977 enabled

 Reg(BaseAdd(4) + &HA) = &HFF 'set/reset the all output of V977

 Reg(BaseAdd(4) + &HA) = 0 'set/reset the all output of V977

 EEE_frmHist.Show

 EEE_frmHist.cntrHBook1.hParamVisible = True

 EEE_frmHist.cntrHBook2.hParamVisible = True

End Sub

64

Public Sub InterruptService()

Dim q As Boolean

Dim Chan As Integer, LChan As Integer, RChan As Integer

Dim RawData As Long, EventStored(1 To 3) As Integer

Dim Data As Single

Dim LTim As Single, RTim As Single

Dim LDist As Single, RDist As Single

Dim X(1 To 3) As Single, Y(1 To 3) As Single

Dim L00 As Single, L10 As Single

Dim cosPhi As Single, cosTh As Single

On Error GoTo errHandler

 nEv = nEv + 1

 EventStored(1) = Reg(BaseAdd(1) + &H1020) 'retrieve the accumulate hit number

 EventStored(2) = Reg(BaseAdd(2) + &H1020)

 EventStored(3) = Reg(BaseAdd(3) + &H1020)

' Debug.Print "EventStored", EventStored(1), EventStored(2), EventStored(3)

 For j = 1 To 3

 evStor = EventStored(j)

 For i = 1 To evStor

 RawData = Reg(BaseAdd(j) + &H0) 'row data from TDC

 Chan = (RawData And &H3F80000) \ 2 ^ 19 'mask and get the channel index

 Data = (RawData And &H7FFFF) / 10 'get time value

 If Chan <= 31 Then

 LTim = Data 'left channel

 Else

 Chan = Chan - 32

 RTim = Data 'right channel

 End If

 Next

 LDist = 0.5 * (LTim - RTim + strTim) / tSpeed 'longitudinal position (meter)

 RDist = 0.5 * (RTim - LTim + strTim) / tSpeed

 Debug.Print " data ", Chan, RawData, LTim, RTim, LDist, RDist

 X(j) = (Chan * strDist - Xd) 'transversal position (cm)

 Y(j) = LDist * 100 - Yd

 Next

'--compute Cos(phi) and Cos(theta)

 L00 = Sqr((X(1) - X(3)) ^ 2 + (Y(1) - Y(3)) ^ 2)

 L10 = Sqr(L00 ^ 2 + 4 * Z0 ^ 2)

 cosPhi = (X(3) - X(1)) / L00

 cosTh = 2 * Z0 / L10

' Debug.Print "cosPhi, cosTh ", cosPhi, cosTh

' Debug.Print

 Call EEE_frmHist.cntrHBook1.HF1(cosPhi) 'histogram

 Call EEE_frmHist.cntrHBook2.HF1(cosTh)

 Call EEE_frmHist.cntrHBook1.ShowHist

 Call EEE_frmHist.cntrHBook2.ShowHist

 Reg(BaseAdd(4) + &H10) = 0 'reset all channel interrupt but Not the Mask reg

 Exit Sub

65

errHandler:

' MsgBox Err.Description, vbOKOnly

 Reg(BaseAdd(4) + &H10) = 0 'reset all channel interrupt but Not the Mask reg Exit Sub

End Sub

=============== Code in EEE_frmHist.frm module ===============

Private Sub TassRemoteDaqCntr_ClosingConnection()

 MsgBox “Connection closed from remote computer”

End Sub

Private Sub TassRemoteDaqCntr_LamIsr()

 Call InterruptService

End Sub

=============== Code in EEE_DetecConst.bas module ===============

Public X0 As Single, Y0 As Single

Public X1 As Single, Y1 As Single

Public X2 As Single, Y2 As Single

Public L00 As Single, L10 As Single

Public Const W As Single = 50

Public Const L As Single = 100

Public Const Z0 As Single = 100 'z position of chamber

Public Const Z1 As Single = 0

Public Const Z2 As Single = -100

Public Const Xd As Single = 42 'sensible area

Public Const Yd As Single = 85

Public Const Zd As Single = 0

Public Const strDist As Single = 3.5 'strip dist

Public Const strWdt As Single = 2.5 'strip width

Public Const strLng As Single = 170 'strip length

Public Const tSpeed As Single = 4.5 'strip signal speed 4.5 ns/m

Public Const cSpeed As Single = 3.3 'light speed 3.3 ns/m

Public Const strTim As Single = tSpeed * strLng / 100

66

Java Client EEE _Daq.java Program Code

The following code is a skeleton of Java version for client EEE_Daq.java.

Note: you can found the full Daq program (also the DaqPack.java and hbook.java package) written

in Java in Tass\Sample\RemoteDaqClass\RemoteDaqJava\EEE_DaqJava package. Is user

responsibility to implement the code inside the suitable IDE for Java environment (i.e. Eclips,

Netbeans etc).

/*

 Skeleton example of Remote Data Acquisition program for

D:\ProgramFiles\VB98\TassProject\Sample\TcpIp_Protocol\EEE\EEE_Server\EEE.trg trigger

system

 Refer to www.caen.it/download/?filter=V1190b and www.caen.it/download/?filter=V977

 for manual of CAEN_V1190b and CAEN_V977 Vme modules

 Usage:

Prompt> javac eee_client_daq/EEE_Daq.java

Prompt> java eee_client_daq/EEE_Daq

*/

package eee_client_daq;

 import java.io.*;

 import java.net.*;

 import javax.swing.JFrame;

 import java.awt.Color; //<<< add

 import org.opensourcephysics.display.*;

 import org.opensourcephysics.display.Dataset;

 import org.opensourcephysics.frames.PlotFrame;

public class EEE_Daq {

 static String TassMessage;

 static int nEv;

 static int[] BaseAdd={0,0,0,0,0};

 static int BlockNum, Index;

 static double DataValue, DataTime;

 static double McTh, McPhi;

 static String DataMess;

//<<<< Tcp/Ip RemoteDaqAdd Computer, to be update, see Help/About TASS menu and also

Remote Daq section

//write down the correct Ip number of TASS computer

// static String RemoteDaqAdd = "192.168.1.61";

 static String RemoteDaqAdd = "127.0.0.1";

67

 static DaqPack Daq;

 static HBook H;

 String comand;

 String message;

 String returnMessage;

 public static void main(String[] args) throws Exception {

 Daq = new DaqPack(); // instance Daq Package

 Daq.Connect(RemoteDaqAdd);

 H = new HBook(); // instance HBook Package

 // H.hInit("Cos(theta)", 0.5, 1, 100);

 H.hInit("Cos(Phi)", -1, 1, 200);

 H.hColor("BLUE");

 H.hXYlabel("ADC channel", "Content"); // da capire perche' non funziona

 H.hType("BAR");

 BaseAdd[1] = 0x100000; // base address for Caen_V1190B in stat 2

 BaseAdd[2] = 0x200000; // base address for Caen_V1190B in stat 3

 BaseAdd[3] = 0x300000; // base address for Caen_V1190B in stat 4

 BaseAdd[4] = 0x400000; // base address for Caen_V977 in stat 5

 Daq.setReg(BaseAdd[1] + 0x100A, 0x0); //set interrupt level V1190B in stat 2

 Daq.setReg(BaseAdd[1] + 0x1022, 0x2); //Almost Full Level V1190B in stat 2

 Daq.setReg(BaseAdd[2] + 0x100A, 0x0); //set interrupt level V1190B in stat 3

 Daq.setReg(BaseAdd[2] + 0x1022, 0x2); //Almost Full Level V1190B in stat 3

 Daq.setReg(BaseAdd[3] + 0x100A, 0x0); //set interrupt level V1190B in stat 4

 Daq.setReg(BaseAdd[3] + 0x1022, 0x2); //Almost Full Level V1190B in stat 4

 Daq.setReg(BaseAdd[4] + 0xE, 0x0); //interrupt mask for V977 (all channels enabled)

 Daq.setReg(BaseAdd[4] + 0x20, 0x7); //interrupt for V977 enabled

 Daq.setReg(BaseAdd[4] + 0xA, 0xFF); //set/reset the all output of V977

 Daq.setReg(BaseAdd[4] + 0xA, 0x0); //set/reset the all output of V977

 Daq.RunLoop();

 } // end main

//---------------------------------

 static public void DaqInit() throws Exception {

 // to be implemented

 } // end DaqInit method

//---------------------------------

 static public void LamIsr() throws Exception {

68

 int Chan=0;

 int RawData=0;

 int[] EventStored = {0,0,0,0};

 int evStor=0;

 double Data=0;

 double LTim=0;

 double RTim=0;

 double LDist=0;

 double RDist=0;

 double X[]={0,0,0,0};

 double Y[]={0,0,0,0};

 double cosPhi=0;

 double cosTh=0;

 double X0 , Y0;

 double X1 , Y1;

 double X2 , Y2;

 double L00 , L10;

 final double W = 50;

 final double L = 100;

 final double Z0 = 100; // z position of chamber

 final double Z1 = 0;

 final double Z2 = -100;

 final double Xd = 42; // sensible area

 final double Yd = 85;

 final double Zd = 0;

 final double strDist = 3.5; // strip dist

 final double strWdt = 2.5; // strip width

 final double strLng = 170; // strip length

 final double tSpeed = 4.5; // strip signal speed 4.5 ns/m

 final double cSpeed = 3.3; // strip signal speed 3.3 ns/m

 final double strTim = tSpeed * strLng / 100;

 nEv = nEv + 1;

System.out.println();

System.out.println("nEv " + nEv);

System.out.println();

 EventStored[1] = Daq.getReg(BaseAdd[1] + 0x1020); // retrieve the accumulate hit

number

 EventStored[2] = Daq.getReg(BaseAdd[2] + 0x1020);

 EventStored[3] = Daq.getReg(BaseAdd[3] + 0x1020);

 for (int j = 1; j <= 3; j++) {

 evStor = EventStored[j];

69

 for (int i = 1; i <= evStor; i++) {

 RawData = Daq.getReg(BaseAdd[j] + 0x0); // row data from TDC

 Chan = ((RawData & 0x3F80000) >> 19); // mask and get the channel

index

 Data = (RawData & 0x7FFFF) / 10. ; // get time value.

 // Divided by 10 because 0.1 ns/count

 if (Chan <= 31) {

 LTim = Data; // left channel

 } else {

 Chan = Chan - 32;

 RTim = Data; // right channel

 }

 }

 // end for i

 LDist = 0.5 * (LTim - RTim + strTim) / tSpeed; // longitudinal position

(meter)

 RDist = 0.5 * (RTim - LTim + strTim) / tSpeed;

//System.out.println(" data " + Chan + " " + LDist + " " + RDist);

System.out.println(" data " + Chan + " " + LDist + " " + RDist + " " + (LDist + RDist));

 X[j] = (Chan * strDist - Xd); // transversal position (cm)

 Y[j] = LDist * 100 - Yd;

 }

 // end for j

System.out.println();

// --compute Cos(phi) and Cos(theta)

 L00 = Math.sqrt(Math.pow((X[1] - X[3]),2) + Math.pow((Y[1] - Y[3]),2));

 L10 = Math.sqrt(Math.pow(L00,2) + 4 * Math.pow(Z0, 2));

 if ((L00 == 0.) || (L10 == 0.)) {return;}

 cosPhi = (X[3] - X[1]) / L00;

 cosTh = 2 * Z0 / L10;

// H.hF1(cosTh);

 H.hF1(cosPhi);

 H.hShow();

System.out.format("CosTheta " +"%.2f%n", cosTh);

System.out.format("cosPhi " +"%.2f%n", cosPhi);

System.out.println();

// Call EEE_frmHist.cntrHBook1.HF1(cosPhi) // histogram

// Call EEE_frmHist.cntrHBook2.HF1(cosTh)

// Call EEE_frmHist.cntrHBook1.ShowHist

70

// Call EEE_frmHist.cntrHBook2.ShowHist

 Daq.setReg(BaseAdd[4] + 0x10, 0x0); //reset all channel interrupt

but Not the Mask reg

 return;

 } // end LamIsr method

//---------------------------------

 static public void BrkIsr(String BrkMess) throws Exception {

 // to be implemented

 System.out.println(" BrkMess = " + BrkMess);

 } // end BrkIsr method

//---------------------------------

 static public void GeneralMessage(String GenMess) throws Exception {

 // to be implemented

 System.out.println(" GenMess = " + GenMess);

 } // end GeneralMessage method

} // end class EEE_Daq

71

7. External Signal Data File

The capability to accept input signals from files and send output signals to files has been

introduced in TASS since Ver.3.0. This new feature allows the integration of trigger system in

whole simulation chain of experiment.

Indeed, so far, the simulation of experiments has been limited to physical and geometrical

aspects of detectors in order to maximize the efficiencies for the measurements under test. For this

goal very powerful tools, like Geant program, are often used to trace the particles flow inside the

experimental apparatus allowing to simulate hit and/or energy deposition in any elements of

detector, but …

none information about resolution and dead time of trigger and data acquisition chain can

be extracted from Geant output.

One of the goals of TASS is to fill this gap (see fig.1).

Indeed the Geant output file, correctly formatted, can be used as input signal data file to the

TASS program simulating the real trigger hardware. TASS, in turn, produces an output data file, to

be used by analysis program, reproducing the correct output from real data acquisition system.

No assumptions have been made about the resolution and data format, they are built-in TASS

output. Just as example, the reader can try to imagine how a standard program can analyse two

overlapping pulses coming from a poor time resolution detector; this problem is directly solved by

TASS: it simulates the real hardware.

Another source of input data file could come from digital scope or digital signal analyser.

Indeed the modern versions of these devices usually have the capability to store file of the acquired

signals on a built-in mass memory device (USB memory, floppy disk etc.). These files, in turn, can

be used as input data files in TASS environment.

Moreover, this new feature allows to partition very complex trigger system in separate blocks,

each of them doing a specific job (for example, as in real world, block for energy trigger, muon

trigger and so on). Each block produces its own output file then, merging those all together, they are

sent as input file to final decision trigger block. The partition in several blocks allows to share the

simulation among different teams and therefore to benefit a simpler and better design and tune of

complex trigger system.

Input data files represent input signals that can be applied to any Lemo or Ecl input plug. User

has responsibility to supply the correct data format and the correct amplitude (see later).

Output data files represent output signals and they can be issued from any Lemo and Ecl output

plugs.

The input signal data files take the extension .sif

The output signal data files take the extension .sof

The output data files and input data files are format compatible, that is, one .sof file can be

directly used as input .sif file

Let us understand, in following section, how TASS interacts with external data files.

72

The external signal data file format

TASS accept input signals data file .sif with format as reported in below table. The data file is

organized in event block, each of them starting with the [Block] keyword and ending with

[EndBlock] keyword.

You can think an event block as a collection of signals coming from the hardware detector and

belonging to a single physical event.

Inside each event block, the [Event] lines define the effective input signals each one identified

by its SignalName, SignalValue and SignalTime.

For every event block, many input signals can be arranged in the same event block, TASS

takes care to reorganize in its memory all [Event] lines in ascending time order.

When TASS starts the run simulation, first of all, it checks if an input data file is requested (the

Tolls/Options/External Signals tab defines the .sif file name) and, if this is the case, it collects the

first event block.

When the first [EndBlock] keyword is detected, TASS starts the simulation using the [Event]

data as input signal. When any signals belonging to the first block have been processed, TASS reads

the next event block, processes it, and so on. If an EOF (end of file) is detected then TASS rewinds

the file and runs again the same event blocks as new input signals. If [Rewind] keyword is missing

no rewind operation will be performed and the run pauses at EOF; user is warned by the red led and

the message “No more events” appearing on the tools bar of the main TASS window.

The [Block] keyword is optional, then it can be omitted, indeed it can be very useful to identify

the BlockNumber if an error occurs.

Before starting the simulation the user has to associate any SignalName to its input plug, please

refer to “How to assign an input signal data file to input plug” next section. In case a

SignalName is not assigned to any plugs a warning message is issued.

----------- Signal Data File format ----------------

 [Comment], Header comment line (optional)

 [Rewind] (optional)

 [Block], BlockNumber (optional)

 [Event], EvNum , SignalName, SignalValue, SignalTime

 [Event], EvNum+1 , SignalName, SignalValue, SignalTime

 [Event], EvNum+2 , SignalName, SignalValue, SignalTime event block (BlockNumber)
th

 [Event], EvNum+n , SignalName, SignalValue, SignalTime

 [EndBlock]

 [Block], BlockNumber+1 (optional)

 [Event], EvNum , SignalName, SignalValue, SignalTime
 [Event], EvNum+1 , SignalName, SignalValue, SignalTime

 [Event], EvNum+2 , SignalName, SignalValue, SignalTime event block (BlockNumber +1)
th

 [Event], EvNum+n , SignalName, SignalValue, SignalTime

 [EndBlock]

73

The general structure of any lines inside the Signal Data File assume the format:

[Keyword], Param1, Param2, …

where Keyword is one of the following words and Param are the associate parameters depending

from the keyword. [Keyword] and Parameters must be comma separated (CSV structure).

[Comment] keyword defines a comment line, the maximum length for the comment is

approximately 2 billion (2^31) characters. Comment string has to be in a single line and

separate by a comma from keyword. Many comment lines can appear anywhere in the file.

TASS doesn’t treat the comment lines but they can be useful to the user as marker point

along the file.

[Rewind] keyword defines if the current .sif file has to be rewind and processed again when an

 EOF is detected.

[Block] keyword marks the start of an event block and defines the Block number. This is an

optional line and the BlockNumber is reported by TASS if an error occurs reading the .sif

file.

[Event] keyword defines the effective input signal.

EvNum identifies the n
th

 event line. The EvNum parameter is not treated by TASS but it

 can be useful to identify the event line if en error occurs.

SignalName is the name of input signal.

SignalValue is the value of input signal (value in Volt). The keywords NIM0, NIM1,

 TTL0, TTL1, ECL0, ECL1 can be used as well.

SignalTime is the current time (in ns), respect to the first event in the current Block, when a

change occurs in the input value of signal

[EndBlock] keyword identifies the end of the current event block.

Note 1. Many keywords are optional but we suggest to include them because they can help you in

debugging the file itself if an error in format occurs.

Note 2. The .sif file can be produced either by a program code (i.e. a suitable formatted output from

Geant) or as result of TASS itself as a .sof file (see later).

Note 3. In TASS the analog signals are treated in a discrete approximation, meaning that signals

level and time change only in step, rather than continuously. Therefore to describe an analogue

signal many [Event] lines (each one being a change in the amplitude level of a signal) need to

define as good as possible the signal itself.

Note 4. For each EventBlock TASS takes care to reorganize in its memory all [Event] lines in

ascending SignalTime order.

74

How to assign an external input signal file to input plug

To use an external input signal file, before to start the simulation, the user has to associate the

input signals to their input plugs.

First of all the user has to assign the Input Signal Data File (.sif) to the current project (the .sif

path name is recorded by TASS when the project .trg file is saved):

 Start TASS and load your trigger project file (.trg).

 Select Tools/Options…/External Signals tab, then select the File (.sif) option in the
Input signals from… box.

Note: leave the box empty if don't use External data input file

 Write the full path name in the text box or use the Browse button to navigate in the

directory structure.

 Close the Options window by the OK button.
Once the signal file has been defined, TASS scans whole file and collects a list of all defined

SignalName signals (see the previous section) contained in it.

Now you have to connect the input plugs to corresponding user defined SignalName.

Select the External Signal/Connect to Input File menu, the cursor change to , click

over the not connected input plug you wish to assign an input signal to. The form in following

figure appears.

75

In the top part, the form shows the name of .sif file and the location of the input plug you have

clicked.

Click on the combo text box, the list of all available input signals, defined into .sif file, is

shown. Choose the signal you want associate to the selected plug. If you wish you can add a

delay
(*)

.

When a signal has been associated to a plug, it is marked “connected” by a leading character

“^” and the plug itself changes its picture to "connected to data file" and it is marked by a yellow

ring (similar behavior for Ecl plug, see Cursor summary section).

Note 1: No more than one plug can be associated to every input signal, that is, only

unmarked signals can be associated to free input plugs.

Note 2: input signals can’t be assigned to input plugs with a cable connection.

To remove an existing association choose External Signal/Remove from Input File menu

then click on the plug you want disconnect. The Remove from All Input File drops down all the

existing associations.

The list of all associations can be obtained by UserList/Signal Connection List menu.

You are not obliged to assign all the input signals to a input plug but, nevertheless, upon run

starts TASS warns you by the message:

To avoid recursive warning messages you can answer “No” to the last question.

(*)

 The delay can represents the cable length connecting the plug, it will be add to SignalTime read from .sif file.

76

How to assign an external output signal file to output plug

To use an external output signal file, before to start the simulation, the user has to associate the

output signals to their output plugs.

First of all the user has to assign the Output Signal Data File (.sof) to the current project (the

.sof path name is recorded by TASS when the project .trg file is saved):

 Start TASS and load your trigger project file (.trg).

 select Tools/Options…/External Signals tab, then select the File (.sof) option in the

Output signals to… box.

Note: leave the box empty if don't use External data output file

 Write the full path name in the text box or use the Browse button to navigate in the
directory structure.

 Close the Options window by the OK button.

Warning: if the .sof file already exists the new data will be appended to it.

Now you have to connect the output plugs to corresponding user defined SignalName.

Select the External Signal/Connect to Output File menu, the cursor change to , click

on the output plug you wish to assign an output signal to. The form in following figure appears.

77

In the top part, the form shows the name of .sof file and the location of the output plug you

have clicked.

In the text box insert the name of signal you want to associate to the output plug.

You can choose if this signal, and its slope, has to be considered as the last event in the current

event block. In this case an [EndBlock] keyword will be appended just after the current [Event]

line on the .sof file (see “The external signal data file format” section).

The plug changes to "connected to data file" and it is marked by a yellow ring (similar

behavior for Ecl plug, see Cursor summary section).

Note 1: The name of signal can’t start with the leading special character “^”.

Note 2: an output signal can be associated to an external file also if the plug is connected by

cable.

To remove an existing association choose External Signal/Remove from Output File menu

then click over the plug you want disconnect. The Remove from All Output File drops down all

existing associations.

The list of all associations can be obtained by UserList/Signal Connection List menu.

Example program using external file data signal

In this example we show a simple case of an external data file use. User can consider the

signal list in the .sif file as product by the Geant output or any other detectors simulation program.

User can try the external data file features running the trigger project set up

Test CAEN_C208 CFD_InputOutput_File.trg provided in Sample/Test/Test_Caen_C208_CFD

folder. In that you can recognize the same project Test CAEN_C208 CFD.trg where the

NimWaveGen has been omitted. In this example, indeed, the input signals will be extracted from

the external input signal file Test CAEN_C208 CFD.sif and sent to the input plug; the processed

signals from the output plug are sent back to Test CAEN_C208 CFD.sof file.

The TASS simulation stops when the end of file is reached, to do a cycling run add, by hand,

the [Rewind] keyword anywhere in the .sif file.

To know the assignments of any input and output plugs to the corresponding external signals

use the UserList/Signal Connections List menu.

78

8. External Tcp/Ip signal data

Starting from Vers.4.0 has been introduced the new feature allowing TASS to be connect on the

Internet network via Tcp/Ip protocol. This capability opens a new class of possible use of TASS

system, that is:

TASS can accept input data representing external electrical signals and send output data via a

Tcp/Ip internet connection
(*)

. This new feature promotes TASS to become not only a simulator but

also a very powerful monitor of hardware trigger system (see next “Remote Hardware Monitor”

section).

As already mentioned at beginning of this section, TASS can accept data to the input plugs of the

simulated modules and sends resulting simulation data on the output plugs via Tcp/Ip protocol. The

input, output and control data will be simple string messages exchanged from server and client

computer.

TASS will treat the input data as real electrical signals and it will process them to generate the

resulting output data.

Although the data format for the Tcp/Ip communication is very similar to that of .sif file (see

“External Signal Data File” section), some care has to be taken. Indeed in Tcp/Ip case the

communication between the external world and TASS is organized as a server-client relationship

and the communication itself has to be controlled by handshake messages.

The server (the computer suppling the data) has to provide one Tcp/Ip listener socket

having the capability to send and receive ASCII string messages. The server uses the socket to

exchange messages concerning values of input signals coming from detector and to provide

the messages concerning data elaborate by the hardware trigger system.

User can follow the list of sample code in

Sample\TcpIp_Protocol\ TcpIp_DataFile_Server\TcpIp_DataFile_Server.vbp

On the client side, TASS provides a built-in suitable socket. This socket provides logic to

accept input data from Tcp/Ip connection and output as the real hardware does.

Of course, since the communication between the server and the client is based on the exchange

of Tcp/Ip messages the two systems can run programs developed by different languages and to sit

on different platforms, too. The only request is to provide the correct data format and the correct

handshake.

(*)

 This function is similar at that described in the previous section “External File Data Signals”. The difference is that in

the those case the data came from an external file while here the data are provided through a internet tcp/ip

communication.

79

In Tcp/Ip protocol, before any data

transmission could take effect, a

connection section has to be established

in advance between the server and the

client sides.

The client always starts the

connection request. TASS takes six retry

to attempt to establish the connection,

after that, this error message is issued.

Indeed upon TASS starts the run simulation, first of all, it checks if an external Tcp/Ip

connection is requested for the current project and, if the case, it tries to establish a communication

with the computer which the Tcp/Ip and port numbers are defined into the Input signals from…

box in Tools/Options…/External Signals tab. If the server grants the request the connection is

established, otherwise an error message is issued and the run will be paused.

Note 1 : Of course a suitable program has to be provided on server side to handle the correct

handshake messages and correct data format, refer to the example later in this section.

Note 2: The Tcp/Ip connection activity is displayed any time on the right side of task bar in the

bottom part of main TASS window. Any time user can monitor messages exchanged by External

Signal menu

- Show messages on input socket

- Show messages on output socket

- Show messages on Daq socket

Note 3: Since the connection is always started by client side, the server does not need to know

in advance the client Tcp/Ip number: it takes this number from initial request for connection.

The external Tcp/Ip signal data format

TASS accepts input Tcp/Ip signals data with format as reported in following table.

The Tcp/Ip data consists of ASCII characters lines, each line starting with a keyword, enclosed

in square brackets, followed by parameters, the numbers and type of them depending by the

keyword. Keywords and parameters are comma separated (CSV)

The data lines are organized in event block, each of them starting with the [Block] keyword

and ending with [EndBlock] keyword.

You can think an event block as a collection of signals coming from the hardware detector and

belonging to a single physical event.

Inside each event block, the [Event] lines define the effective input signal each one identified

by its SignalName, SignalValue and SignalTime.

For every event block, many [Event] lines can be arranged in the same event block, TASS take

care to reorganize in its memory all the [Event] signals in ascending time order.

80

----------- Signal Tcp/Ip Data format ----------------

 [Comment], Header comment line (optional)

 [Pause] (optional)

 [Block], BlockNumber (optional)

 [Event], EvNum , SignalName, SignalValue, SignalTime

 [Event], EvNum+1, SignalName, SignalValue, SignalTime

 event block (BlockNumber)
th

 [Event], EvNum+n, SignalName, SignalValue, SignalTime

 [DataMessage], EvNum+n+1, Message

 [EndBlock]

 [Block], BlockNumber+1 (optional)

 [Event], EvNum , SignalName, SignalValue, SignalTime

 [Event], EvNum+1, SignalName, SignalValue, SignalTime

 event block (BlockNumber +1)
th

 [Event], EvNum+n, SignalName, SignalValue, SignalTime

 [DataMessage], EvNum+n+1, Message

 [EndBlock]

Note 1. Refer to previous section “The external signal data file format” for the mean of any

parameters.

Note 2. The [Pause] keyword can be sent, in response to a [GetEvent] message, from the

server to indicate that it is busy or data is not available (see below).

Note 3. The [DataMessage] keyword identifies any message. The DataMessage line is

forwarded to the Daq program defined in the Tools/Options/Daq menu. It is user’s responsibility to

decode and use this messages string.

Note 4. The BlockNumber and EvNum parameters are not used in TASS, their purpose is

only as data line marker useful to trace the line in case of error.

How to assign an external Tcp/Ip input signal to input plug

 To use the external signals Tcp/Ip data, before to start the simulation the user has to

associate the Tcp/Ip input signals to their input plugs.

 First of all the user has to assign the Tcp/Ip server number to the current project (the Tcp/Ip

number and all the associations are recorded by TASS when the project .trg file is saved):

 Start TASS and load or build your trigger project file (.trg).

 Select Tools/Options… menu, then the External Signal tab. Select in Input signals from

... frame the Remote computer option and write in the relevant text box the server Tcp/Ip

and port numbers (default port is 1001).

81

 Close the Options window by the OK button.

Now you have to associate the input plugs to corresponding data signal SignalName defined in

[Event] line (see previous table).

On the main TASS window:

 Select the External Signal/Connect to Tcp/Ip Input menu, the cursor change to

 Click on the input plug you wish assign an input signal, the form in following figure

appears. In the upper part, the form shows the Tcp/Ip number of server computer and the

location of the input plug you have click.

.

 Insert in the text box the SignalName chosen for the signal you want associate to the
selected plug. If you wish you can add a delay

(*)
.

 Repeat the previous procedure for all plug-signal associations.

Note 1: You can’t assign a Tcp/Ip input signal to input plugs having cable connection.

Note 2: In Tcp/Ip input signal case, TASS can’t know in advance the name of all SignalName,

then the user has the responsibility to assign to the input plug the correct SignalName

that will be exchanged via Tcp/Ip messages.

To remove an existing association choose External Signal/Remove from Tcp/Ip Input menu

then click on the plug you want disconnect. The Remove from All Tcp/Ip Input drops down any

existing associations.

(*)

 The delay can represent the cable length connecting the plug, it will be add to SignalTime received from server.

82

TASS collects all the associations into its internal table, the list of all associations can be

obtained by UserList/Signal Connection List menu.

You are not obliged to assign all the incoming SignalName to any plugs but, nevertheless, if

TASS receives at run time an [Event] message with a SignalName not foreseen in its table then the

following warning messages is issued:

To avoid recursive warning messages you can answer “No” to the last question.

Handshake protocol for Tcp/Ip input signal

Each [Event] line has to be retrieved from the server at the proper time ([Event] line by

[Event] line basis) and for this purpose the following handshake scheme has to be followed (see

“Handshake for Tcp/Ip input signal” flow chart in next page).

When TASS has no more events in its buffer to process, it sends a [GetEvent] message to the

server to request the transmission of a new EventBlock, starts a timeout timer, then it enters in a

waiting loop. This loop can be terminated only either by the reception the [EndBlock] or [Pause]

messages from server or when the timeout timer expires. In this last case the simulation will be

paused and a warning message issued.

Any time the server is collecting data into its Buffer and, if at least one Event is available, the

DataReady flag will be set and a check on the PendingReq flag is done.

It is user responsibility to handle in the suitable way the server Buffer integrity, in case the

server is written in Visual Basic then the frmExternalData_Template.frm can be used as guide.

Upon the server receives the [GetEvent] message it set the PendingReq flag.

PendingReq = True means a preavious data request has not been till granted then the server

verifies its buffer to see if a physical data event block is ready to be transmitted:

a) Data is not ready. This can happen if the server is busy doing something else, for

instance, the physical run has been paused or the physical event is not still collected,

and so on.

In this case the server sends back a [Pause] message to warn the TASS client to wait.

83

b) Data is ready. This means the physical data event block has been collected in the server

buffer and it is ready to be sent.

In this case the server sends the first data line (see previous tab).

When TASS receives the message it checks its validity and analyses its meaning:

a) [Pause]. This message means data is not ready to be transmitted by server then TASS stops

the timeout timer and waits.

b) [Event]. This message is an event data signal, TASS collects it in its data buffer then sends

back a new [GetEvent] message to request the next event data line.

The [GetEvent]- [Event] handshake process goes on until all events data signal in server

buffer have been transmitted. The [EndBlock] message (see later) stops this handshake.

c) [DataMessage]. This special message is issued from the server to send any information to

the Daq program. Indeed, TASS doesn’t treat this message but simply forwards it to

companion Daq program, is user responsibility to decode and take proper action in response

to it. Any number of [DataMessage] lines and anywhere in the block can be sent.

Usually the server uses the [DataMessage] messages to pass value of real hardware

Camac/Vme register or results of simulation procedures or to warn for special conditions

run.

d) [EndBlock]. This message means all events data signal of current Block have been

transmitted then TASS can start the simulation.

e) Any other messages will be discarded.

Upon [EndBlock] has been received, TASS starts the simulation using the [Event] data

collected in its buffer as input signals. When any signals belonging to the current event block has

been processed, TASS sends a new [GetEvent] message to request the next block, processes it, and

so on.

Note: For debug and monitor purpose user can select Write received messages options in the

External Signal menu. This feature writes on the logger window all the received messages

allowing the user to trace and debug the exchanged data and handshake messages between

server and client.

The data flow in following picture represents in graphical way the previous explanation.

84

Handshake for Tcp/Ip input signal

 Client side Server side

yes

frmExternalData_Template

Return

[Event]

[DataMessage]

Buffer Full Return
yes

no

 (Computer running TASS) (Server Computer)

MessageReceived

[EndBlock]

[Pause]

Send message [GetEvent]

Set EndBlock = False

Start timeout Timer

Message received

Discarded it if not

[GetEvent]

PendingReq

No more event in

TASS buffer

Call MessageReceived

procedure

DataReady

Send Message

PendingReq = False

Send Message

PendingReq = True

Collect event

Send message [GetEvent]

Restart timer

Stop Timer

EndBlock = True

Perform TASS simulation

for current event block

Return

[GetEvent]

[Event], [EndBlock],

[DataMessage]

yes

yes

yes

no

no

[EndBlock]

no

[Pause]

Return

yes

yes

no

no

[GetEvent]

TimeOut

Error

Return

Stop Timer

Collect

physical event

in server buffer

set DataReady

85

How to assign an external Tcp/Ip output signal to output plug

In some case can be needed to send signals or result data produced by TASS simulation to a

third computer. TASS has built-in all the support for this purpose.

To use an external Tcp/Ip output signal, before to start the simulation, the user has to associate

the output signals to their output plugs.

First of all the user has to assign the output signal Tcp/Ip server number to the current project

(the Tcp/Ip number is recorded by TASS when the project .trg file is saved):

 Start TASS and load your trigger project file (.trg).

 Select Tools/Options… menu, then the External Signals tab. Select in Output signals

to ... frame the Remote computer option and write on the relevant text box the server

Tcp/Ip and port numbers (default port is 1002).

 Close the Options window by the OK button.

Now you have to connect the output plugs to corresponding user defined SignalName.

Select the External Signal/Connect to Tcp/Ip Output menu, the cursor change to ,

click on the output plug you whish assign an output signal, the following figure appears

In the upper part, the form shows the Tcp/Ip number of server computer and the location of the

output plug you have clicked.

Insert in the text box any name of signal you want associate to the selected plug.

You can choose if this signal, and its slope, has to be considered as the last event in the current

event block. In this case an [EndBlock] message will be sent, just after the current [Event] line to

the server computer (see “The external signal Tcp/Ip data format” section).

Note 1: The name of signal can’t start with the leading special character “^”.

86

Note 2: an output Tcp/Ip signal can be associated to a output plug also if it is connected by

cable.

To remove an existing association choose External Signal/Remove from Tcp/Ip Output

menu then click over the plug you want disconnect.

The Remove from All Tcp/Ip Output drops down any existing associations.

The list of all associations can be obtained by UserList/Signal Connection List menu.

In Tcp/Ip communication each [Event] line has to be sent to the server at the proper time

([Event] line by [Event] line basis) and for this purpose the following handshake skim has to be

followed.

When TASS has an output data to be sent, it issues an [Event] message to the server and starts

a timeout timer then enters in a waiting loop. This loop can be terminated only either by the

reception the [Ack] message from server or when the timeout timer expires. In this last case the

simulation will be paused and a warning message issued.

From the server side point of view, the reception of the [Event] message starts the following

procedure. The server checks the PendingAck flag to see if a previous message is still not granted,

then it verifies if itself can accept more incoming messages:

a) Server is busy. This can happen if the server is doing some thing else, for instance, the

physical run has been paused or the event buffer is full, and so on.

In this case the server sends back a [Pause] message to warn the client TASS to wait.

b) Server is ready. This means the event message can be collected in the server buffer.

In this case the server sends an [Ack] message to notify to client TASS the message has

been accepted and processed.

Note: After a [Pause] message the server, when ready again, has to send an [Ack]

message in order to recover the connection.

Upon TASS receives the back message it checks its validity and analyses its mean:

a) [Pause]. This message means server is not ready then TASS stops the timer and waits.

b) [Ack]. This message means server accepted the previous [Event] message and it is ready for

the next one. TASS stops the timer and prepares for next output data.

c) Any other messages will be considered optional and then discarded.

Note: For debug purpose user can select Write sent messages options in the External Signal

menu. This feature writes on the logger window all the sent messages allowing the user to trace

and debug the exchanged data and handshake messages between server and client.

The data flow in following picture represents in graphical way the previous explanation.

87

Handshake for Tcp/Ip output signal

 Client side Server side

Data to be sent to

server ready

Start timeout Timer

Send message [Event]

RemoteAck

=true
no

yes

Return

Message received

PendingAck

ServerBusy

PendingAck = True

Send Message [Pause]

Collect event

PendingAck = False

Send Message [Ack]

[Pause]
[Ack]

Return

yes

yes

no

no

[Event]

Message received

[Ack]

[Pause] Stop Timer

RemoteAck = True

Return
yes

yes

no

no

TimeOut

Error

Return

Stop Timer

Return

 (Computer running TASS) (Server Computer)

88

Example programs for external Tcp/Ip data signal

Here we report explanation and comments about a simple program showing how to use the

Tcp/Ip features of TASS system.

The user, after installation of TASS package, can find the code programs for these examples in

/Sample/TcpIp_Protocol folder.

Tcp/Ip DataFile Server

This is a very simple example using the external Tcp/Ip data signal features provided by TASS

system. It shows only how to implement the communication between server and client without any

user software implementation, no any interaction with real hardware is taken in account and,

indeed, the external signals will be extracted from a data file.

In this example the real external data will be simulated by data extracted from the file

Tcp_Ip_DataFile.sif
(*)

(**)

, and sent via network to client where TASS will process them to

produce the output data that will be sent back to the server and stored in Tcp_Ip_DataFile.sof file.

Both files (.sif and .sof) are user selectable by menu.

When the whole set of data in the .sif file has been used then the file will be rewind and the

same set used again as new data.

On server side the running program simulates a very fast dummy data acquisition and, when

the client TASS asks for a new event, the next current event will be sent via Tcp/Ip connection.

Two buttons, one for each connection, allow the user to pause the transmission to simulate a

more realistic behaviour of data acquisition system.

(*)

Refer to External signal data file and How to assign an external file output signal to output plug sections to

understand this feature.
(**)

 The data file Tcp_Ip_DataFile.sif can represent, for instance, data produced by Geant output simulating our

detector.

89

To try the program go in the following step:

On the server computer.

1. Into Sample\TcpIp_Protocol\TcpIp_DataFile_Server folder start the

TcpIp_DataFile_Server.exe
(*)

 program.

2. By the Sif File menu in the left window navigate in the system directory and select the

Tcp_Ip_DataFile.sif file.

3. By the Sof File menu in the right window choose or write the file name where the data sent

back to the server will be stored.

4. Push the Run button. The Buffer content bar shows the current level of the server buffer.

The Event transmitted label shows the number of simulated events sent to the client

computer running TASS program.

On client computer.

1. Start TassProject.exe program.

2. Select File/Open… menu, then navigate in the system directory and select the trigger file

/Sample/TcpIp_Protocol/TcpIp_DataFile_Server/ ExternalDataSignal.trg (to save

packaging space this file is included into “server” folder but it represents the client side).

3. Select Tool/Options… and in the External Signals tab make sure both the Remote

computer option boxes are selected, then write down the correct Tcp/Ip address and port

number of your server computer, then close the window.

The Tcp/Ip number of server computer is shown in blue character in the right form. If user

uses the same computer for client and server then has to insert the Tcp/Ip number 127.0.0.1

or “LocalHost” name.

The default port numbers are 1001 and 1002 for the External Input Signals and External

Output Signals respectively.

4. Start the simulation by the Run/Cont button. TASS asks for a Tcp/Ip connection to the

server and you can see the connection status on the tooltip on the right side of the StatusBar

of main TASS window.

(*

)
If the Visual Basic 6 system is present on the server, you can edit and modify any part of code (refer to Microsoft

Visual Basic documentation), open TcpIp_DataFile_Server.vbp.

User could translate the present program in any language he likes and running it under any operating system. In this

case, of course, the Visual Basic presence is not mandatory.

90

 If everything is ok, you should see in the left window of server the messages sent to TASS

and on the right window the messages received.

 For every received [EndBlock], TASS process the events in the current block and you can

see the resulting behaviour on the digital scope.

 You can simulate a more realistic data acquisition behaviour by the buttons Run/Pause and

ServerReady/ServerBusy in both windows.

 Take into account that the server will stop to sending data only when the buffer is empty.

Note: In the Tcp/Ip protocol before to exchange any data a connection has to be established

between server and client. It is always the client requiring a connection to the server, this means you

need to have the server already running and ready to accept the request.

91

9. Remote Hardware Monitor

Note: in the present version of TASS manual no any example will be shown for the Remote

 Hardware Monitor in this section. Let's postpone to next version to present this feature.

TASS can accept input data representing external electrical signals and send output data via a

Tcp/Ip network connection. This new feature promotes TASS to become not only a simulator but

also a very powerful monitor of real hardware trigger system.

Usually the event signals coming from the detector are issued to the hardware trigger to be

analysed and, on the basis of physical request, rejected or accepted to be sent to the Daq system

computer (dark/blue path in top, without splitter). An hardware fault on this chain can be discovered

From
detector

=

Tcp/Ip socket
(server)

To Daq

computer

Error
flags

In
p
u
t

la
tc

h

Hardware trigger
system

TASS simulation

Tcp/Ip socket

(client)

O
u

tp
u

t
d

a
ta

m
e
s
s
a
g

e

In
p

u
t

d
a
ta

m
e
s
s
a
g

e

T
c
p

/I
p

Trigger system

TASS computer

Spy crate

+ +

Splitter Splitter

O
u
tp

u
t

la
tc

h

92

only on the basis of the analysis of physical data collected, often very long time after the fault

occurred, this means unreliable data or complete data loss.

Therefore a prompt discovery of bad hardware functionality is a mandatory request.

TASS can solve this problem as shown in figure (light/yellow path, with splitter):

suppose TASS simulates the real hardware trigger. A sample of input signals from detector (on

physical event basis) can be latched and converted as data and sent, via a Tcp/Ip communication, to

TASS program (green path) where they will be treated as in the real hardware. The TASS output

can be compared with the latched output from the trigger system then flags can be set. A difference

between real output and the simulated one can therefore warn the operator!

Of course, due to the different speed of the paths, the comparison can be done only on a sample of

events, but the delay involved to alert the user for a hardware fault can be of order of few tens of

seconds for complex trigger system simulation.

The above principle scheme can be implemented, for instance, in the following way

93

In figure the above crate represents the real trigger system and the electrical signals coming

from detector are split in two branches, the first one going to the relevant input of trigger and the

second (blue cables) going to the input registers (latch) system located in a spy crate. The output

signals of trigger are collected (green cables) in another input registers (latch) system located in the

spy crate, too.

The Vme controller takes cure to format the readout input and output signal values in suitable

way to be sent on the network (see "External Tcp/Ip Signal Data" section). On the client side there

is a TASS simulation reproducing the trigger setup and doing the proper comparison.

To be note that none changes are done to the real system (Blue path)! This is a

mandatory request.

Being the communication based on Tcp/Ip exchange of messages, the monitor process can be

done on world wide remote sites.

Even more: to know a fault occurred is not enough; you have to find where the fault is!

TASS can be extremely useful to help the trigger designer to identify a bad working module in

the hardware system doing the cross check between the real set up and the simulated one. Indeed

the tools supplied by TASS (scope, wave generator, running step by step, and so on) allow to

perform this cross check in easy and efficient way.

94

